

Machine	Learning
For

Absolute	Beginners:
A	Plain	English	Introduction

Third	Edition

Oliver	Theobald

Third	Edition
Copyright	©	2021	by	Oliver	Theobald
All	 rights	 reserved.	 No	 part	 of	 this	 publication	may	 be	 reproduced,
distributed,	 or	 transmitted	 in	 any	 form	 or	 by	 any	 means,	 including
photocopying,	 recording,	or	other	 electronic	or	mechanical	methods,
without	 the	 prior	 written	 permission	 of	 the	 publisher,	 except	 in	 the
case	of	brief	quotations	embodied	in	critical	reviews	and	certain	other
non-commercial	uses	permitted	by	copyright	law.

Edited	 by	 Jeremy	 Pedersen	 and	Red	 to	 Black	 Editing’s	 Christopher
Dino.

For	feedback,	print	quality	issues,	media	contact,	omissions	or	errors
regarding	this	book,	please	contact	the	author	at
oliver.theobald@scatterplotpress.com

TABLE	OF	CONTENTS
PREFACE
WHAT	IS	MACHINE	LEARNING?
MACHINE	LEARNING	CATEGORIES
THE	MACHINE	LEARNING	TOOLBOX
DATA	SCRUBBING
SETTING	UP	YOUR	DATA
LINEAR	REGRESSION
LOGISTIC	REGRESSION
K	-NEAREST	NEIGHBORS
K	-MEANS	CLUSTERING
BIAS	&	VARIANCE
SUPPORT	VECTOR	MACHINES
ARTIFICIAL	NEURAL	NETWORKS
DECISION	TREES
ENSEMBLE	MODELING
DEVELOPMENT	ENVIRONMENT
BUILDING	A	MODEL	IN	PYTHON
MODEL	OPTIMIZATION
NEXT	STEPS
THANK	YOU
BUG	BOUNTY
FURTHER	RESOURCES
APPENDIX:	INTRODUCTION	TO	PYTHON

FIND	US	ON:

Teachable
http://scatterplotpress.teachable.com/
For	 introductory	 video	 courses	 on	 machine	 learning	 as	 well	 as	 bonus	 video
lessons	included	with	this	book.

Skillshare
www.skillshare.com/user/machinelearning_beginners
For	 introductory	 video	 courses	 on	 machine	 learning	 and	 videos	 lessons	 from
other	instructors.	

Instagram
machinelearning_beginners
For	mini-lessons,	books	quotes,	and	more!

http://scatterplotpress.teachable.com/
http://www.skillshare.com/user/machinelearning_beginners
https://www.instagram.com/machinelearning_beginners/

1

PREFACE
Machines	 have	 come	 a	 long	way	 since	 the	 onset	 of	 the	 Industrial	Revolution.
They	 continue	 to	 fill	 factory	 floors	 and	 manufacturing	 plants,	 but	 their
capabilities	 extend	 beyond	 manual	 activities	 to	 cognitive	 tasks	 that,	 until
recently,	 only	 humans	 were	 capable	 of	 performing.	 Judging	 song	 contests,
driving	automobiles,	and	detecting	fraudulent	transactions	are	three	examples	of
the	complex	tasks	machines	are	now	capable	of	simulating.
But	these	remarkable	feats	trigger	fear	among	some	observers.	Part	of	their	fear
nestles	 on	 the	 neck	 of	 survivalist	 insecurities	 and	 provokes	 the	 deep-seated
question	of	what	if	?	What	if	intelligent	machines	turn	on	us	in	a	struggle	of	the
fittest?	 What	 if	 intelligent	 machines	 produce	 offspring	 with	 capabilities	 that
humans	 never	 intended	 to	 impart	 to	 machines?	 What	 if	 the	 legend	 of	 the
singularity	is	true?
The	other	notable	fear	is	the	threat	to	job	security,	and	if	you’re	a	taxi	driver	or
an	accountant,	there’s	a	valid	reason	to	be	worried.	According	to	joint	research
from	the	Office	for	National	Statistics	and	Deloitte	UK	published	by	the	BBC	in
2015,	 job	 professions	 including	 bar	 worker	 (77%),	 waiter	 (90%),	 chartered
accountant	(95%),	receptionist	(96%),	and	taxi	driver	(57%)	have	a	high	chance
of	being	automated	by	 the	year	2035.	 [1]	Nevertheless,	 research	on	planned	 job
automation	and	crystal	ball	gazing	concerning	the	future	evolution	of	machines
and	 artificial	 intelligence	 (AI)	 should	 be	 read	 with	 a	 pinch	 of	 skepticism.	 In
Superintelligence:	Paths,	Dangers,	Strategies	 ,	 author	Nick	Bostrom	discusses
the	 continuous	 redeployment	 of	 AI	 goals	 and	 how	 “two	 decades	 is	 a	 sweet
spot…	 near	 enough	 to	 be	 attention-grabbing	 and	 relevant,	 yet	 far	 enough	 to
make	it	possible	that	a	string	of	breakthroughs…might	by	then	have	occurred.”(
[2])([3])

While	AI	 is	moving	 fast,	 broad	 adoption	 remains	 an	 unchartered	 path	 fraught
with	 known	 and	 unforeseen	 challenges.	 Delays	 and	 other	 obstacles	 are
inevitable. 	Nor	is	machine	learning	a	simple	case	of	flicking	a	switch	and	asking
the	machine	to	predict	the	outcome	of	the	Super	Bowl	and	serve	you	a	delicious
martini.
Far	from	a	typical	out-of-the-box	analytics	solution,	machine	learning	relies	on

statistical	 algorithms	managed	 and	 overseen	 by	 skilled	 individuals	 called	 data
scientists	 and	machine	 learning	 engineers.	This	 is	 one	 labor	market	where	 job
opportunities	 are	 destined	 to	 grow	 but	 where	 supply	 is	 struggling	 to	 meet
demand.
In	 fact,	 the	 current	 shortage	 of	 professionals	with	 the	 necessary	 expertise	 and
training	 is	 one	 of	 the	 primary	 obstacles	 delaying	 AI’s	 progress.	 According	 to
Charles	Green,	the	Director	of	Thought	Leadership	at	Belatrix	Software:

“It’s	a	huge	challenge	to	find	data	scientists,	people	with	machine	learning
experience,	or	people	with	the	skills	to	analyze	and	use	the	data,	as	well	as
those	 who	 can	 create	 the	 algorithms	 required	 for	 machine	 learning.
Secondly,	 while	 the	 technology	 is	 still	 emerging,	 there	 are	 many	 ongoing
developments.	 It’s	 clear	 that	AI	 is	a	 long	way	 from	how	we	might	 imagine
it.”	[4]

Perhaps	your	own	path	to	working	in	the	field	of	machine	learning	starts	here,	or
maybe	a	baseline	understanding	is	sufficient	to	fulfill	your	curiosity	for	now.
This	book	focuses	on	the	high-level	fundamentals,	including	key	terms,	general
workflow,	 and	 the	 statistical	 underpinnings	 of	 basic	 algorithms	 to	 set	 you	 on
your	path.	To	design	and	code	intelligent	machines,	you’ll	first	need	to	develop	a
strong	grasp	of	classical	statistics.	Algorithms	derived	from	classical	statistics	sit
at	 the	 core	 of	 machine	 learning	 and	 constitute	 the	 metaphorical	 neurons	 and
nerves	that	power	artificial	cognitive	abilities.	Coding	is	the	other	indispensable
part	 of	 machine	 learning,	 which	 includes	 managing	 and	 manipulating	 large
amounts	 of	 data.	 Unlike	 building	 a	web	 2.0	 landing	 page	with	 click-and-drag
tools	 like	Wix	 and	WordPress,	 machine	 learning	 requires	 Python,	 C++,	 R	 or
another	programming	language.	If	you	haven’t	learned	a	relevant	programming
language,	you	will	need	to	if	you	wish	to	make	further	progress	in	this	field.	But
for	 the	purpose	of	 this	 compact	 starter’s	 course,	 the	 following	chapters	 can	be
completed	without	any	programming	experience.
While	 this	 book	 serves	 as	 an	 introductory	 course	 to	 machine	 learning,	 please
note	 that	 it	 does	 not	 constitute	 an	 absolute	 beginner’s	 introduction	 to
mathematics,	 computer	 programming,	 and	 statistics.	 A	 cursory	 knowledge	 of
these	 fields	or	 convenient	 access	 to	 an	 Internet	 connection	may	be	 required	 to
aid	understanding	in	later	chapters.
For	those	who	wish	to	dive	into	the	coding	aspect	of	machine	learning,	Chapter
17	and	Chapter	19	walk	you	through	the	entire	process	of	setting	up	a	machine
learning	model	using	Python.	A	gentle	 introduction	 to	coding	with	Python	has
also	been	 included	 in	 the	Appendix	and	 information	 regarding	 further	 learning
resources	can	be	found	in	the	final	section	of	this	book.

Lastly,	video	tutorials	and	other	online	materials	(included	free	with	this	book)
can	be	found	at	https://scatterplotpress.teachable.com/p/ml-code-exercises	.

https://scatterplotpress.teachable.com/p/ml-code-exercises

2

WHAT	IS	MACHINE	LEARNING?
In	 1959,	 IBM	 published	 a	 paper	 in	 the	 IBM	 Journal	 of	 Research	 and
Development	 with	 an	 intriguing	 and	 obscure	 title.	 Authored	 by	 IBM’s	 Arthur
Samuel,	the	paper	investigated	the	application	of	machine	learning	in	the	game
of	checkers	“to	verify	the	fact	that	a	computer	can	be	programmed	so	that	it	will
learn	 to	play	a	better	game	of	checkers	 than	can	be	played	by	 the	person	who
wrote	the	program.”	[5]

Figure	1:	Historical	mentions	 of	 “machine	 learning”	 in	 published	books.	Source:	Google	Ngram	Viewer,
2017

Although	it	wasn’t	the	first	published	paper	to	use	the	term	“machine	learning”
per	se,	Arthur	Samuel	is	regarded	as	the	first	person	to	coin	and	define	machine
learning	as	the	concept	and	specialized	field	we	know	today.	Samuel’s	landmark
journal	 submission,	 Some	 Studies	 in	 Machine	 Learning	 Using	 the	 Game	 of
Checkers,	 introduced	machine	 learning	 as	 a	 subfield	 of	 computer	 science	 that
gives	computers	the	ability	to	learn	without	being	explicitly	programmed.
While	 not	 directly	 treated	 in	 Arthur	 Samuel’s	 initial	 definition,	 a	 key
characteristic	of	machine	learning	is	the	concept	of	self-learning.	This	 refers	 to
the	 application	 of	 statistical	 modeling	 to	 detect	 patterns	 and	 improve
performance	 based	 on	 data	 and	 empirical	 information;	 all	 without	 direct
programming	commands.	This	is	what	Arthur	Samuel	described	as	the	ability	to

learn	without	 being	 explicitly	 programmed.	 Samuel	 didn’t	 infer	 that	machines
may	 formulate	 decisions	 with	 no	 upfront	 programming.	 On	 the	 contrary,
machine	 learning	 is	 heavily	 dependent	 on	 code	 input.	 Instead,	 he	 observed
machines	can	perform	a	set	task	using	input	data	rather	than	relying	on	a	direct
input	command	.

Figure	2:	Comparison	of	Input	Command	vs	Input	Data

An	example	of	an	input	command	is	entering	“2+2”	in	a	programming	language
such	as	Python	and	clicking	“Run”	or	hitting	“Enter”	to	view	the	output.
>>>	2+2
4
>>>
This	 represents	 a	 direct	 command	 with	 a	 pre-programmed	 answer,	 which	 is
typical	 of	 most	 computer	 applications.	 Unlike	 traditional	 computer
programming,	 though,	 where	 outputs	 or	 decisions	 are	 pre-defined	 by	 the
programmer,	 machine	 learning	 uses	 data	 as	 input	 to	 build	 a	 decision	 model.
Decisions	 are	 generated	 by	 deciphering	 relationships	 and	 patterns	 in	 the	 data
using	probabilistic	reasoning,	trial	and	error,	and	other	computationally-intensive
techniques.	This	means	 that	 the	output	of	 the	decision	model	 is	determined	by
the	contents	of	 the	 input	data	rather	 than	any	pre-set	 rules	defined	by	a	human
programmer.	The	human	programmer	is	still	responsible	for	feeding	the	data	into
the	model,	 selecting	 an	 appropriate	 algorithm	and	 tweaking	 its	 settings	 (called
hyperparameters)	in	a	bid	to	reduce	prediction	error,	but	ultimately	the	machine
and	developer	operate	a	layer	apart	in	contrast	to	traditional	programming.
To	draw	an	example,	let’s	suppose	that	after	analyzing	YouTube	viewing	habits,
the	decision	model	identifies	a	significant	relationship	among	data	scientists	who
like	 watching	 cat	 videos.	 A	 separate	 model,	 meanwhile,	 identifies	 patterns

among	the	physical	traits	of	baseball	players	and	their	likelihood	of	winning	the
season’s	Most	Valuable	Player	(MVP)	award.
In	 the	 first	 scenario,	 the	 machine	 analyzes	 which	 videos	 data	 scientists	 enjoy
watching	on	YouTube	based	on	user	engagement;	measured	in	likes,	subscribes,
and	 repeat	 viewing.	 In	 the	 second	 scenario,	 the	machine	 assesses	 the	 physical
attributes	 of	 previous	 baseball	 MVPs	 among	 other	 features	 such	 as	 age	 and
education.	However,	at	no	stage	was	the	decision	model	told	or	programmed	to
produce	 those	 two	outcomes.	By	decoding	 complex	patterns	 in	 the	 input	 data,
the	model	uses	machine	learning	to	find	connections	without	human	help.	This
also	means	that	a	related	dataset	collected	from	another	time	period,	with	fewer
or	 greater	 data	 points,	 might	 push	 the	 model	 to	 produce	 a	 slightly	 different
output.
Another	distinct	feature	of	machine	learning	is	the	ability	to	improve	predictions
based	on	experience.	Mimicking	the	way	humans	base	decisions	on	experience
and	the	success	or	failure	of	past	attempts,	machine	learning	utilizes	exposure	to
data	 to	 improve	 its	 decision	 making.	 The	 socializing	 of	 data	 points	 provides
experience	and	enables	the	model	to	familiarize	itself	with	patterns	in	the	data.
Conversely,	 insufficient	 input	 data	 restricts	 the	 model’s	 ability	 to	 deconstruct
underlying	 patterns	 in	 the	 data	 and	 limits	 its	 capacity	 to	 respond	 to	 potential
variance	 and	 random	 phenomena	 found	 in	 live	 data.	 Exposure	 to	 input	 data
thereby	 deepens	 the	 model’s	 understanding	 of	 patterns,	 including	 the
significance	 of	 changes	 in	 the	 data,	 and	 to	 construct	 an	 effective	 self-learning
model.
A	 common	 example	 of	 a	 self-learning	 model	 is	 a	 system	 for	 detecting	 spam
email	messages.	Following	an	 initial	serving	of	 input	data,	 the	model	 learns	 to
flag	emails	with	suspicious	subject	lines	and	body	text	containing	keywords	that
correlate	strongly	with	spam	messages	flagged	by	users	in	the	past.	Indications
of	spam	email	may	include	words	like	dear	friend,	free,	invoice,	PayPal,	Viagra,
casino,	payment,	bankruptcy,	and	winner	 .	However,	as	more	data	 is	analyzed,
the	model	might	also	find	exceptions	and	incorrect	assumptions	that	render	the
model	 susceptible	 to	 bad	 predictions.	 If	 there	 is	 limited	 data	 to	 reference	 its
decision,	the	following	email	subject,	for	example,	might	be	wrongly	classified
as	spam:	“PayPal	has	received	your	payment	for	Casino	Royale	purchased	on
eBay.”
As	this	is	a	genuine	email	sent	from	a	PayPal	auto-responder,	the	spam	detection
system	 is	 lured	 into	 producing	 a	 false-positive	 based	 on	 previous	 input	 data.
Traditional	programming	is	highly	susceptible	to	this	problem	because	the	model
is	rigidly	defined	according	to	pre-set	rules.	Machine	learning,	on	the	other	hand,

emphasizes	 exposure	 to	 data	 as	 a	 way	 to	 refine	 the	 model,	 adjust	 weak
assumptions,	 and	 respond	 appropriately	 to	 unique	 data	 points	 such	 as	 the
scenario	just	described.
While	data	is	used	to	source	the	self-learning	process,	more	data	doesn’t	always
equate	to	better	decisions;	the	input	data	must	be	relevant.	In	Data	and	Goliath:
The	Hidden	Battles	to	Collect	Your	Data	and	Control	Your	World,	Bruce	Schneir
writes	 that,	“When	looking	for	 the	needle,	 the	last	 thing	you	want	 to	do	is	pile
lots	more	hay	on	 it.”	 [6]	This	means	 that	adding	 irrelevant	data	can	be	counter-
productive	 to	 achieving	 a	 desired	 result.	 In	 addition,	 the	 amount	 of	 input	 data
should	be	compatible	with	the	processing	resources	and	time	that	is	available.

Training	&	Test	Data
In	machine	 learning,	 the	 input	data	 is	 typically	split	 into	 training	data	and	 test
data	 .	The	first	split	of	data	is	the	training	data	 ,	which	is	the	initial	reserve	of
data	 used	 to	 develop	 the	 model.	 In	 the	 spam	 email	 detection	 example,	 false-
positives	 similar	 to	 the	 PayPal	 auto-response	message	might	 be	 detected	 from
the	 training	 data.	 Modifications	 must	 then	 be	 made	 to	 the	 model,	 e.g.,	 email
notifications	 issued	 from	 the	 sending	 address	 “payments@paypal.com”	 should
be	 excluded	 from	 spam	 filtering.	 Using	 machine	 learning,	 the	 model	 can	 be
trained	to	automatically	detect	these	errors	(by	analyzing	historical	examples	of
spam	 messages	 and	 deciphering	 their	 patterns)	 without	 direct	 human
interference.
After	you	have	developed	a	model	based	on	patterns	extracted	from	the	training
data	and	you	are	satisfied	with	 the	accuracy	of	 its	predictions,	you	can	test	 the
model	on	 the	remaining	data,	known	as	 the	 test	data	 .	 If	you	are	also	satisfied
with	 the	model’s	 performance	 using	 the	 test	 data,	 the	model	 is	 ready	 to	 filter
incoming	 emails	 in	 a	 live	 setting	 and	generate	 decisions	 on	 how	 to	 categorize
those	messages.	We	will	discuss	training	and	test	data	further	in	Chapter	6.

The	Anatomy	of	Machine	Learning
The	 final	 section	 of	 this	 chapter	 explains	 how	 machine	 learning	 fits	 into	 the
broader	 landscape	 of	 data	 science	 and	 computer	 science.	 This	 includes
understanding	 how	 machine	 learning	 connects	 with	 parent	 fields	 and	 sister
disciplines.	 This	 is	 important,	 as	 you	will	 encounter	 related	 terms	 in	machine
learning	 literature	and	courses.	Relevant	disciplines	can	also	be	difficult	 to	 tell
apart,	especially	machine	learning	and	data	mining.
Let’s	 start	 with	 a	 high-level	 introduction.	 Machine	 learning,	 data	 mining,
artificial	intelligence,	and	computer	programming	all	fall	under	the	umbrella	of

computer	science,	which	encompasses	everything	related	 to	 the	design	and	use
of	computers.	Within	the	all-encompassing	space	of	computer	science	is	the	next
broad	 field	 of	 data	 science.	 Narrower	 than	 computer	 science,	 data	 science
comprises	 methods	 and	 systems	 to	 extract	 knowledge	 and	 insights	 from	 data
with	the	aid	of	computers.

Figure	3:	The	lineage	of	machine	learning	represented	by	a	row	of	Russian	matryoshka	dolls

Emerging	from	computer	science	and	data	science	as	the	third	matryoshka	doll
from	 the	 left	 in	Figure	3	 is	 artificial	 intelligence.	Artificial	 intelligence,	or	AI,
encompasses	the	ability	of	machines	to	perform	intelligent	and	cognitive	tasks.
Comparable	 to	how	 the	 Industrial	Revolution	gave	birth	 to	an	era	of	machines
simulating	physical	tasks,	AI	is	driving	the	development	of	machines	capable	of
simulating	cognitive	abilities.
While	 still	broad	but	dramatically	more	honed	 than	computer	 science	and	data
science,	AI	 spans	 numerous	 subfields	 that	 are	 popular	 and	 newsworthy	 today.
These	 subfields	 include	 search	 and	 planning,	 reasoning	 and	 knowledge
representation,	 perception,	 natural	 language	 processing	 (NLP),	 and	 of	 course,
machine	learning.

												
Figure	4:	Visual	representation	of	the	relationship	between	data-related	fields

For	 students	 interested	 in	 AI,	 machine	 learning	 provides	 an	 excellent	 starting
point	as	it	provides	a	narrower	and	more	practical	lens	of	study	(in	comparison
to	 AI).	 Algorithms	 applied	 in	 machine	 learning	 can	 also	 be	 used	 in	 other
disciplines,	including	perception	and	natural	language	processing.	In	addition,	a
Master’s	degree	 is	 adequate	 to	develop	 a	 certain	 level	of	 expertise	 in	machine
learning,	 but	 you	 may	 need	 a	 PhD	 to	 make	 genuine	 progress	 in	 the	 field	 of
artificial	intelligence.
As	mentioned,	machine	 learning	overlaps	with	data	mining—a	sister	discipline
based	on	discovering	and	unearthing	patterns	in	large	datasets.	Both	techniques
rely	 on	 inferential	methods,	 i.e.	 predicting	 outcomes	 based	 on	 other	 outcomes
and	 probabilistic	 reasoning,	 and	 draw	 from	 a	 similar	 assortment	 of	 algorithms
including	principal	component	analysis,	 regression	analysis,	decision	trees,	and
clustering	 techniques.	 To	 add	 further	 confusion,	 the	 two	 techniques	 are
commonly	 mistaken	 and	 misreported	 or	 even	 explicitly	 misused.	 The
textbook	Data	 mining:	 Practical	 machine	 learning	 tools	 and	 techniques	 with
Java	 	 is	 said	 to	have	originally	been	 titled	Practical	machine	 learning,	but	 for
marketing	reasons	“data	mining”	was	later	appended	to	the	title.	[7]
Lastly,	because	of	their	interdisciplinary	nature,	experts	from	a	diverse	spectrum
of	 disciplines	 often	 define	 data	mining	 and	machine	 learning	 differently.	 This
has	 led	 to	 confusion,	 in	 addition	 to	 a	 genuine	 overlap	 between	 the	 two
disciplines.	But	whereas	machine	 learning	 emphasizes	 the	 incremental	 process

of	self-learning	and	automatically	detecting	patterns	through	experience	derived
from	exposure	to	data,	data	mining	is	a	less	autonomous	technique	of	extracting
hidden	insight.
Like	 randomly	drilling	 a	hole	 into	 the	 earth’s	 crust,	 data	mining	doesn’t	 begin
with	a	clear	hypothesis	of	what	insight	it	will	find.	Instead,	it	seeks	out	patterns
and	 relationships	 that	 are	 yet	 to	 be	 mined	 and	 is,	 thus,	 well-suited	 for
understanding	large	datasets	with	complex	patterns.	As	noted	by	the	authors	of
Data	Mining:	 Concepts	 and	 Techniques,	 data	mining	 developed	 as	 a	 result	 of
advances	 in	 data	 collection	 and	 database	 management	 beginning	 in	 the	 early
1980s	 [8]	 and	 an	 urgent	 need	 to	 make	 sense	 of	 progressively	 larger	 and
complicated	datasets.	[9]
Whereas	data	mining	 focuses	on	analyzing	 input	variables	 to	predict	 a	new
output	 ,	 machine	 learning	 extends	 to	 analyzing	 both	 input	 and	 output
variables	 .	 This	 includes	 supervised	 learning	 techniques	 that	 compare	 known
combinations	 of	 input	 and	 output	 variables	 to	 discern	 patterns	 and	 make
predictions,	and	reinforcement	learning	which	randomly	trials	a	massive	number
of	 input	 variables	 to	 produce	 a	 desired	 output.	 Another	 machine	 learning
technique,	 called	 unsupervised	 learning,	 generates	 predictions	 based	 on	 the
analysis	of	input	variables	with	no	known	target	output.	This	technique	is	often
used	in	combination	or	in	preparation	for	supervised	learning	under	the	name	of
semi-supervised	 learning,	 and	 although	 it	 overlaps	 with	 data	 mining,
unsupervised	learning	tends	to	deviate	from	standard	data	mining	methods	such
as	association	and	sequence	analysis.

Table	1:	Comparison	of	techniques	based	on	the	utility	of	input	and	output	data/variables

To	 consolidate	 the	 difference	 between	 data	mining	 and	machine	 learning,	 let’s
consider	 an	 example	 of	 two	 teams	 of	 archaeologists.	 One	 team	 has	 little
knowledge	 of	 their	 target	 excavation	 site	 and	 imparts	 domain	 knowledge	 to
optimize	 their	 excavation	 tools	 to	 find	 patterns	 and	 remove	 debris	 to	 reveal
hidden	 artifacts.	 The	 team’s	 goal	 is	 to	 manually	 excavate	 the	 area,	 find	 new

valuable	discoveries,	and	then	pack	up	their	equipment	and	move	on.	A	day	later,
they	fly	to	another	exotic	destination	to	start	a	new	project	with	no	relationship
to	the	site	they	excavated	the	day	before.
The	second	 team	 is	also	 in	 the	business	of	excavating	historical	 sites,	but	 they
pursue	a	different	methodology.	They	 refrain	 from	excavating	 the	main	pit	 for
several	 weeks.	 In	 this	 time,	 they	 visit	 other	 nearby	 archaeological	 sites	 and
examine	 patterns	 regarding	 how	 each	 archaeological	 site	 is	 constructed.	With
exposure	to	each	excavation	site,	they	gain	experience,	thereby	improving	their
ability	 to	 interpret	patterns	and	reduce	prediction	error.	When	 it	comes	 time	 to
excavate	the	final	and	most	important	pit,	 they	execute	their	understanding	and
experience	of	the	local	terrain	to	interpret	the	target	site	and	make	predictions.
As	 is	 perhaps	 evident	 by	 now,	 the	 first	 team	 puts	 their	 faith	 in	 data	 mining
whereas	the	second	team	relies	on	machine	learning.	While	both	teams	make	a
living	 excavating	 historical	 sites	 to	 discover	 valuable	 insight,	 their	 goals	 and
methodology	are	different.	The	machine	learning	team	invests	in	self-learning	to
create	 a	 system	 that	 uses	 exposure	 to	 data	 to	 enhance	 its	 capacity	 to	 make
predictions.	The	data	mining	 team,	meanwhile,	 concentrates	 on	 excavating	 the
target	 area	with	 a	more	direct	 and	 approximate	 approach	 that	 relies	 on	human
intuition	rather	than	self-learning.
We	will	 look	more	 closely	 at	 self-learning	 specific	 to	machine	 learning	 in	 the
next	chapter	and	how	input	and	output	variables	are	used	to	make	predictions.

3

MACHINE	LEARNING	CATEGORIES
Machine	 learning	 incorporates	 several	hundred	 statistical-based	algorithms	and
choosing	the	right	algorithm(s)	for	the	job	is	a	constant	challenge	of	working	in
this	 field.	 Before	 examining	 specific	 algorithms,	 it’s	 important	 to	 consolidate
one’s	understanding	of	the	three	overarching	categories	of	machine	learning	and
their	treatment	of	input	and	output	variables.

Supervised	Learning
Supervised	 learning	 imitates	 our	 own	 ability	 to	 extract	 patterns	 from	 known
examples	and	use	that	extracted	insight	to	engineer	a	repeatable	outcome.	This	is
how	 the	 car	 company	 Toyota	 designed	 their	 first	 car	 prototype.	 Rather	 than
speculate	or	create	a	unique	process	 for	manufacturing	cars,	Toyota	created	 its
first	 vehicle	 prototype	 after	 taking	 apart	 a	Chevrolet	 car	 in	 the	 corner	 of	 their
family-run	 loom	 business.	 By	 observing	 the	 finished	 car	 (output)	 and	 then
pulling	apart	its	individual	components	(input),	Toyota’s	engineers	unlocked	the
design	process	kept	secret	by	Chevrolet	in	America.
This	process	of	understanding	a	known	input-output	combination	is	replicated	in
machine	 learning	using	supervised	learning.	The	model	analyzes	and	deciphers
the	relationship	between	input	and	output	data	 to	 learn	the	underlying	patterns.
Input	data	is	referred	to	as	the	independent	variable	(uppercase	“X”),	while	the
output	data	 is	 called	 the	dependent	 variable	 (lowercase	 “y”).	An	 example	of	 a
dependent	variable	(y)	might	be	the	coordinates	for	a	rectangle	around	a	person
in	a	digital	photo	(face	recognition),	the	price	of	a	house,	or	the	class	of	an	item
(i.e.	 sports	 car,	 family	 car,	 sedan).	 Their	 independent	 variables—which
supposedly	 impact	 the	 dependent	 variable—could	 be	 the	 pixel	 colors,	 the	 size
and	 location	 of	 the	 house,	 and	 the	 specifications	 of	 the	 car	 respectively.	After
analyzing	 a	 sufficient	 number	 of	 examples,	 the	 machine	 creates	 a	 model:	 an
algorithmic	 equation	 for	 producing	 an	 output	 based	 on	 patterns	 from	 previous
input-output	examples.
Using	 the	model,	 the	machine	can	 then	predict	an	output	based	exclusively	on
the	 input	 data.	 The	 market	 price	 of	 your	 used	 Lexus,	 for	 example,	 can	 be

estimated	using	 the	 labeled	examples	of	other	cars	 recently	 sold	on	a	used	car
website.

Table	2:	Extract	of	a	used	car	dataset

With	 access	 to	 the	 selling	 price	 of	 other	 similar	 cars,	 the	 supervised	 learning
model	 can	work	backward	 to	determine	 the	 relationship	between	a	 car’s	value
(output)	 and	 its	 characteristics	 (input).	The	 input	 features	of	your	own	car	 can
then	be	inputted	into	the	model	to	generate	a	price	prediction.

Figure	5:	Inputs	(X)	are	fed	to	the	model	to	generate	a	new	prediction	(y)

While	input	data	with	an	unknown	output	can	be	fed	to	the	model	to	push	out	a
prediction,	unlabeled	data	cannot	be	used	 to	build	 the	model.	When	building	a
supervised	 learning	 model,	 each	 item	 (i.e.	 car,	 product,	 customer)	 must	 have
labeled	input	and	output	values—known	in	data	science	as	a	“labeled	dataset.”
Examples	of	common	algorithms	used	in	supervised	learning	include	regression
analysis	 (i.e.	 linear	 regression,	 logistic	 regression,	 non-linear	 regression),
decision	 trees,	 k	 -nearest	 neighbors,	 neural	 networks,	 and	 support	 vector
machines,	each	of	which	are	examined	in	later	chapters.

Unsupervised	Learning
In	 the	 case	 of	 unsupervised	 learning,	 the	 output	 variables	 are	 unlabeled,	 and
combinations	of	input	and	output	variables	aren’t	known.	Unsupervised	learning
instead	 focuses	 on	 analyzing	 relationships	 between	 input	 variables	 and
uncovering	hidden	patterns	that	can	be	extracted	to	create	new	labels	regarding
possible	outputs.
If	you	group	data	points	based	on	 the	purchasing	behavior	of	SME	(Small	and
Medium-sized	Enterprises)	and	 large	enterprise	customers,	 for	example,	you’re
likely	to	see	two	clusters	of	data	points	emerge.	This	is	because	SMEs	and	large
enterprises	 tend	 to	 have	 different	 procurement	 needs.	 When	 it	 comes	 to
purchasing	cloud	computing	infrastructure,	for	example,	essential	cloud	hosting
products	 and	 a	 Content	 Delivery	 Network	 (CDN)	 should	 prove	 sufficient	 for
most	SME	customers.	Large	enterprise	customers,	though,	are	likely	to	purchase
a	broader	array	of	cloud	products	and	complete	solutions	that	include	advanced
security	 and	 networking	 products	 like	 WAF	 (Web	 Application	 Firewall),	 a
dedicated	 private	 connection,	 and	 VPC	 (Virtual	 Private	 Cloud).	 By	 analyzing
customer	purchasing	habits,	unsupervised	learning	is	capable	of	identifying	these
two	groups	of	customers	without	specific	labels	that	classify	a	given	company	as
small/medium	or	large.
The	 advantage	 of	 unsupervised	 learning	 is	 that	 it	 enables	 you	 to	 discover
patterns	 in	 the	 data	 that	 you	 were	 unaware	 of—such	 as	 the	 presence	 of	 two
dominant	 customer	 types—and	 provides	 a	 springboard	 for	 conducting	 further
analysis	 once	 new	 groups	 are	 identified.	 Unsupervised	 learning	 is	 especially
compelling	in	the	domain	of	fraud	detection—where	the	most	dangerous	attacks
are	those	yet	to	be	classified.	One	interesting	example	is	DataVisor;	a	company
that	has	built	 its	business	model	on	unsupervised	 learning.	Founded	in	2013	in
California,	 DataVisor	 protects	 customers	 from	 fraudulent	 online	 activities,
including	 spam,	 fake	 reviews,	 fake	 app	 installs,	 and	 fraudulent	 transactions.
Whereas	 traditional	 fraud	 protection	 services	 draw	 on	 supervised	 learning
models	 and	 rule	 engines,	 DataVisor	 uses	 unsupervised	 learning	 to	 detect
unclassified	categories	of	attacks.
As	DataVisor	explains	on	their	website,	"to	detect	attacks,	existing	solutions	rely
on	human	experience	to	create	rules	or	labeled	training	data	to	tune	models.	This
means	they	are	unable	to	detect	new	attacks	that	haven’t	already	been	identified
by	humans	or	labeled	in	training	data."	[10]	Put	another	way,	traditional	solutions
analyze	chains	of	 activity	 for	 a	 specific	 type	of	 attack	and	 then	create	 rules	 to
predict	and	detect	repeat	attacks.	In	this	case,	the	dependent	variable	(output)	is
the	 event	 of	 an	 attack,	 and	 the	 independent	 variables	 (input)	 are	 the	 common

predictor	variables	of	an	attack.	Examples	of	independent	variables	could	be:
a)	A	 sudden	 large	order	 from	an	unknown	user.	 I.E.,	 established	 customers
might	generally	spend	less	than	$100	per	order,	but	a	new	user	spends	$8,000	on
one	order	immediately	upon	registering	an	account.
b)	A	sudden	surge	of	user	ratings.	I.E.,	As	with	most	technology	books	sold	on
Amazon.com,	the	first	edition	of	this	book	rarely	receives	more	than	one	reader
review	 per	 day.	 In	 general,	 approximately	 1	 in	 200	 Amazon	 readers	 leave	 a
review	and	most	books	go	weeks	or	months	without	a	review.	However,	I	notice
other	 authors	 in	 this	 category	 (data	 science)	 attract	 50-100	 reviews	 in	 a	 single
day!	(Unsurprisingly,	I	also	see	Amazon	remove	these	suspicious	reviews	weeks
or	months	later.)
c)	Identical	or	similar	user	reviews	from	different	users.	Following	the	same
Amazon	 analogy,	 I	 sometimes	 see	 positive	 reader	 reviews	 of	my	 book	 appear
with	other	books	(even	with	reference	to	my	name	as	the	author	still	included	in
the	 review!).	 Again,	 Amazon	 eventually	 removes	 these	 fake	 reviews	 and
suspends	these	accounts	for	breaking	their	terms	of	service.
d)	Suspicious	 shipping	address.	 I.E.,	For	 small	businesses	 that	 routinely	 ship
products	 to	 local	 customers,	 an	 order	 from	 a	 distant	 location	 (where	 their
products	 aren’t	 advertised)	 can,	 in	 rare	 cases,	 be	 an	 indicator	 of	 fraudulent	 or
malicious	activity.
Standalone	activities	such	as	a	sudden	large	order	or	a	remote	shipping	address
might	not	provide	sufficient	information	to	detect	sophisticated	cybercrime	and
are	probably	more	likely	to	lead	to	a	series	of	false-positive	results.	But	a	model
that	monitors	combinations	of	independent	variables,	such	as	a	large	purchasing
order	from	the	other	side	of	the	globe	or	a	landslide	number	of	book	reviews	that
reuse	existing	user	content	generally	leads	to	a	better	prediction.
In	supervised	learning,	the	model	deconstructs	and	classifies	what	these	common
variables	 are	 and	 design	 a	 detection	 system	 to	 identify	 and	 prevent	 repeat
offenses.	 Sophisticated	 cybercriminals,	 though,	 learn	 to	 evade	 these	 simple
classification-based	 rule	 engines	 by	 modifying	 their	 tactics.	 Leading	 up	 to	 an
attack,	 for	 example,	 the	 attackers	 often	 register	 and	 operate	 single	 or	multiple
accounts	and	incubate	these	accounts	with	activities	that	mimic	legitimate	users.
They	 then	 utilize	 their	 established	 account	 history	 to	 evade	 detection	 systems,
which	 closely	 monitor	 new	 users.	 As	 a	 result,	 solutions	 that	 use	 supervised
learning	often	fail	to	detect	sleeper	cells	until	the	damage	has	been	inflicted	and
especially	for	new	types	of	attacks.
DataVisor	and	other	anti-fraud	solution	providers	instead	leverage	unsupervised
learning	 techniques	 to	 address	 these	 limitations.	 They	 analyze	 patterns	 across

hundreds	 of	millions	 of	 accounts	 and	 identify	 suspicious	 connections	 between
users	 (input)—without	 knowing	 the	 actual	 category	 of	 future	 attacks	 (output).
By	 grouping	 and	 identifying	 malicious	 actors	 whose	 actions	 deviate	 from
standard	 user	 behavior,	 companies	 can	 take	 actions	 to	 prevent	 new	 types	 of
attacks	(whose	outcomes	are	still	unknown	and	unlabeled).
Examples	of	suspicious	actions	may	include	the	four	cases	listed	earlier	or	new
instances	of	unnormal	behavior	such	as	a	pool	of	newly	registered	users	with	the
same	profile	picture.	By	identifying	these	subtle	correlations	across	users,	fraud
detection	 companies	 like	DataVisor	 can	 locate	 sleeper	 cells	 in	 their	 incubation
stage.	 A	 swarm	 of	 fake	 Facebook	 accounts,	 for	 example,	 might	 be	 linked	 as
friends	and	like	the	same	pages	but	aren’t	linked	with	genuine	users.	As	this	type
of	 fraudulent	 behavior	 relies	 on	 fabricated	 interconnections	 between	 accounts,
unsupervised	 learning	 thereby	 helps	 to	 uncover	 collaborators	 and	 expose
criminal	rings.
The	drawback,	though,	of	using	unsupervised	learning	is	that	because	the	dataset
is	unlabeled,	 there	aren’t	any	known	output	observations	 to	check	and	validate
the	model,	and	predictions	are	therefore	more	subjective	than	those	coming	from
supervised	learning.
We	 will	 cover	 unsupervised	 learning	 later	 in	 this	 book	 specific	 to	 k	 -means
clustering.	 Other	 examples	 of	 unsupervised	 learning	 algorithms	 include	 social
network	analysis	and	descending	dimension	algorithms.

Semi-supervised	Learning
A	hybrid	 form	of	unsupervised	and	supervised	 learning	 is	also	available	 in	 the
form	of	semi-supervised	learning,	which	is	used	for	datasets	that	contain	a	mix
of	 labeled	 and	 unlabeled	 cases.	 With	 the	 “more	 data	 the	 better”	 as	 a	 core
motivator,	the	goal	of	semi-	supervised	learning	is	to	leverage	unlabeled	cases	to
improve	 the	 reliability	 of	 the	 prediction	model.	 One	 technique	 is	 to	 build	 the
initial	model	using	the	labeled	cases	(supervised	learning)	and	then	use	the	same
model	to	label	the	remaining	cases	(that	are	unlabeled)	in	the	dataset.	The	model
can	 then	 be	 retrained	 using	 a	 larger	 dataset	 (with	 less	 or	 no	 unlabeled	 cases).
Alternatively,	the	model	could	be	iteratively	re-trained	using	newly	labeled	cases
that	meet	a	set	threshold	of	confidence	and	adding	the	new	cases	to	the	training
data	 after	 they	meet	 the	 set	 threshold.	 There	 is,	 however,	 no	 guarantee	 that	 a
semi-supervised	model	 will	 outperform	 a	model	 trained	 with	 less	 data	 (based
exclusively	on	the	original	labeled	cases).

Reinforcement	Learning

Reinforcement	 learning	 is	 the	 third	 and	 most	 advanced	 category	 of	 machine
learning.	 Unlike	 supervised	 and	 unsupervised	 learning,	 reinforcement	 learning
builds	its	prediction	model	by	gaining	feedback	from	random	trial	and	error	and
leveraging	insight	from	previous	iterations.
The	 goal	 of	 reinforcement	 learning	 is	 to	 achieve	 a	 specific	 goal	 (output)	 by
randomly	trialing	a	vast	number	of	possible	input	combinations	and	grading	their
performance.
Reinforcement	 learning	can	be	complicated	 to	understand	and	 is	probably	best
explained	using	a	video	game	analogy.	As	a	player	progresses	through	the	virtual
space	 of	 a	 game,	 they	 learn	 the	 value	 of	 various	 actions	 under	 different
conditions	and	grow	more	familiar	with	 the	field	of	play.	Those	learned	values
then	 inform	 and	 influence	 the	 player’s	 subsequent	 behavior	 and	 their
performance	gradually	improves	based	on	learning	and	experience.
Reinforcement	 learning	 is	 similar,	where	 algorithms	 are	 set	 to	 train	 the	model
based	 on	 continuous	 learning.	 A	 standard	 reinforcement	 learning	 model	 has
measurable	performance	 criteria	where	outputs	 are	graded.	 In	 the	 case	of	 self-
driving	vehicles,	avoiding	a	crash	earns	a	positive	score,	and	in	the	case	of	chess,
avoiding	defeat	likewise	receives	a	positive	assessment.

Q-learning
A	 specific	 algorithmic	 example	 of	 reinforcement	 learning	 is	Q-learning.	 In	Q-
learning,	you	 start	with	 a	 set	 environment	of	 states,	 represented	 as	 “S.”	 In	 the
game	Pac-Man,	states	could	be	the	challenges,	obstacles	or	pathways	that	exist
in	the	video	game.	There	may	exist	a	wall	to	the	left,	a	ghost	to	the	right,	and	a
power	pill	above—each	representing	different	states.	The	set	of	possible	actions
to	respond	to	these	states	is	referred	to	as	“A.”	In	Pac-Man,	actions	are	limited	to
left,	 right,	up,	and	down	movements,	as	well	as	multiple	combinations	 thereof.
The	third	important	symbol	is	“Q,”	which	is	the	model’s	starting	value	and	has
an	initial	value	of	“0.”
As	Pac-Man	explores	the	space	inside	the	game,	two	main	things	happen:
1)	Q	drops	as	negative	things	occur	after	a	given	state/action.
2)	Q	increases	as	positive	things	occur	after	a	given	state/action.
In	 Q-learning,	 the	 machine	 learns	 to	 match	 the	 action	 for	 a	 given	 state	 that
generates	 or	 preserves	 the	 highest	 level	 of	 Q.	 It	 learns	 initially	 through	 the
process	of	random	movements	(actions)	under	different	conditions	(states).	The
model	records	its	results	(rewards	and	penalties)	and	how	they	impact	its	Q	level
and	stores	those	values	to	inform	and	optimize	its	future	actions.
While	 this	 sounds	 simple,	 implementation	 is	 computationally	 expensive	 and

beyond	 the	 scope	 of	 an	 absolute	 beginner’s	 introduction	 to	machine	 learning.
Reinforcement	 learning	 algorithms	 aren’t	 covered	 in	 this	 book,	 but,	 I’ll	 leave
you	with	a	link	to	a	more	comprehensive	explanation	of	reinforcement	learning
and	Q-learning	using	the	Pac-Man	case	study.
https://inst.eecs.berkeley.edu/~cs188/sp12/projects/reinforcement/reinforcement.html

4

THE	MACHINE	LEARNING
TOOLBOX
A	handy	way	to	learn	a	new	skill	is	to	visualize	a	toolbox	of	the	essential	tools
and	 materials	 of	 that	 subject	 area.	 For	 instance,	 given	 the	 task	 of	 packing	 a
dedicated	toolbox	to	build	a	website,	you	would	first	need	to	add	a	selection	of
programming	languages.	This	would	include	frontend	languages	such	as	HTML,
CSS,	 and	 JavaScript,	 one	 or	 two	 backend	 programming	 languages	 based	 on
personal	preferences,	and	of	course,	a	text	editor.	You	might	throw	in	a	website
builder	 such	 as	 WordPress	 and	 then	 pack	 another	 compartment	 with	 web
hosting,	DNS,	and	maybe	a	few	domain	names	that	you’ve	purchased.
This	is	not	an	extensive	inventory,	but	from	this	general	list,	you	start	to	gain	a
better	appreciation	of	what	tools	you	need	to	master	on	the	path	to	becoming	a
successful	web	developer.
Let’s	now	unpack	the	basic	toolbox	for	machine	learning.

Compartment	1:	Data
Stored	in	the	first	compartment	of	the	toolbox	is	your	data.	Data	constitutes	the
input	needed	to	train	your	model	and	generate	predictions.	Data	comes	in	many
forms,	including	structured	and	unstructured	data.	As	a	beginner,	it’s	best	to	start
with	(analyzing)	structured	data.	This	means	that	the	data	is	defined,	organized,
and	labeled	in	a	table,	as	shown	in	Table	3.	Images,	videos,	email	messages,	and
audio	 recordings	 are	 examples	 of	 unstructured	 data	 as	 they	 don’t	 fit	 into	 the
organized	structure	of	rows	and	columns.

Table	3:	Bitcoin	Prices	from	2015-2017

Before	we	proceed,	 I	 first	want	 to	explain	 the	anatomy	of	 a	 tabular	dataset.	A
tabular	 (table-based)	 dataset	 contains	 data	 organized	 in	 rows	 and	 columns.
Contained	in	each	column	is	a	feature	.	A	feature	is	also	known	as	a	variable,	a
dimension	 or	 an	 attribute—	 but	 they	 all	 mean	 the	 same	 thing.	 Each	 row
represents	a	single	observation	of	a	given	feature/variable.	Rows	are	sometimes
referred	to	as	a	case	or	value	,	but	in	this	book,	we	use	the	term	“row.”

Figure	6:	Example	of	a	tabular	dataset

Each	column	is	known	also	as	a	vector	.	Vectors	store	your	X	and	y	values	and
multiple	vectors	(columns)	are	commonly	referred	to	as	matrices	.	In	the	case	of
supervised	learning,	y	will	already	exist	in	your	dataset	and	be	used	to	identify
patterns	in	relation	to	the	independent	variables	(X).	The	y	values	are	commonly
expressed	in	the	final	vector,	as	shown	in	Figure	7.

Figure	7:	The	y	value	is	often	but	not	always	expressed	in	the	far-right	vector

Scatterplots,	 including	 2-D,	 3-D,	 and	 4-D	 plots,	 are	 also	 packed	 into	 the	 first
compartment	of	the	toolbox	with	the	data.	A	2-D	scatterplot	consists	of	a	vertical
axis	 (known	 as	 the	 y-axis)	 and	 a	 horizontal	 axis	 (known	 as	 the	 x-axis)	 and
provides	 the	 graphical	 canvas	 to	 plot	 variable	 combinations,	 known	 as	 data
points.	 Each	 data	 point	 on	 the	 scatterplot	 represents	 an	 observation	 from	 the
dataset	with	X	values	on	the	x-axis	and	y	values	on	the	y-axis.

	

Figure	8:	Example	of	a	2-D	scatterplot.	X	represents	days	passed	and	y	is	Bitcoin	price.

Compartment	2:	Infrastructure
The	 second	 compartment	 of	 the	 toolbox	 contains	 your	 machine	 learning
infrastructure,	which	 consists	 of	 platforms	 and	 tools	 for	 processing	 data.	As	 a
beginner	to	machine	learning,	you	are	likely	to	be	using	a	web	application	(such
as	Jupyter	Notebook)	and	a	programming	language	like	Python.	There	are	then	a
series	of	machine	learning	libraries,	including	NumPy,	Pandas,	and	Scikit-learn,
which	are	compatible	with	Python.	Machine	learning	libraries	are	a	collection	of
pre-compiled	 programming	 routines	 frequently	 used	 in	 machine	 learning	 that
enable	you	to	manipulate	data	and	execute	algorithms	with	minimal	use	of	code.
You	will	 also	 need	 a	machine	 to	 process	 your	 data,	 in	 the	 form	 of	 a	 physical
computer	or	a	virtual	server.	In	addition,	you	may	need	specialized	libraries	for
data	 visualization	 such	 as	 Seaborn	 and	 Matplotlib,	 or	 a	 standalone	 software
program	 like	 Tableau,	 which	 supports	 a	 range	 of	 visualization
techniques	including	charts,	graphs,	maps,	and	other	visual	options.
With	 your	 infrastructure	 sprayed	 across	 the	 table	 (hypothetically	 of	 course),
you’re	now	ready	to	build	your	first	machine	learning	model.	The	first	step	is	to
crank	 up	 your	 computer.	 Standard	 desktop	 computers	 and	 laptops	 are	 both
sufficient	for	working	with	smaller	datasets	that	are	stored	in	a	central	location,
such	as	a	CSV	file.	You	then	need	to	install	a	programming	environment,	such	as
Jupyter	Notebook,	 and	 a	 programming	 language,	 which	 for	most	 beginners	 is
Python.
Python	 is	 the	 most	 widely	 used	 programming	 language	 for	 machine	 learning
because:
a)							It’s	easy	to	learn	and	operate.
b)						It’s	compatible	with	a	range	of	machine	learning	libraries.
c)						It	can	be	used	for	related	tasks,	including	data	collection	(web	scraping)	and

data	piping	(Hadoop	and	Spark).

Other	 go-to	 languages	 for	 machine	 learning	 include	 C	 and	 C++.	 If	 you’re
proficient	with	C	and	C++,	then	it	makes	sense	to	stick	with	what	you	know.	C
and	C++	are	the	default	programming	languages	for	advanced	machine	learning
because	 they	can	run	directly	on	 the	GPU	(Graphical	Processing	Unit).	Python
needs	 to	 be	 converted	before	 it	 can	 run	on	 the	GPU,	but	we’ll	 get	 to	 this	 and
what	a	GPU	is	later	in	the	chapter.
Next,	Python	users	will	need	to	import	the	following	libraries:	NumPy,	Pandas,
and	 Scikit-learn.	 NumPy	 is	 a	 free	 and	 open-source	 library	 that	 allows	 you	 to
efficiently	 load	 and	 work	 with	 large	 datasets,	 including	 merging	 datasets	 and
managing	matrices.
Scikit-learn	provides	access	to	a	range	of	popular	shallow	algorithms,	including
linear	 regression,	 clustering	 techniques,	 decision	 trees,	 and	 support	 vector
machines.	Shallow	learning	algorithms	refer	 to	 learning	algorithms	 that	predict
outcomes	 directly	 from	 the	 input	 features.	 Non-shallow	 algorithms	 or	 deep
learning,	meanwhile,	produce	an	output	based	on	preceding	layers	in	the	model
(discussed	 in	Chapter	 13	 in	 reference	 to	 artificial	 neural	 networks)	 rather	 than
directly	from	the	input	features.	[11]
Finally,	Pandas	enables	your	data	to	be	represented	as	a	virtual	spreadsheet	that
you	can	control	and	manipulate	using	code.	It	shares	many	of	the	same	features
as	Microsoft	Excel	 in	 that	 it	 allows	you	 to	 edit	 data	 and	perform	calculations.
The	name	Pandas	derives	from	the	term	“panel	data,”	which	refers	to	its	ability
to	create	a	series	of	panels,	similar	to	“sheets”	in	Excel.	Pandas	is	also	ideal	for
importing	and	extracting	data	from	CSV	files.

Figure	9:	Previewing	a	table	in	Jupyter	Notebook	using	Pandas

For	 students	 seeking	 alternative	 programming	 options	 for	 machine	 learning

beyond	Python,	C,	and	C++,	there	is	also	R,	MATLAB,	and	Octave.
R	is	a	free	and	open-source	programming	language	optimized	for	mathematical
operations	and	useful	for	building	matrices	and	performing	statistical	functions.
Although	 more	 commonly	 used	 for	 data	 mining,	 R	 also	 supports	 machine
learning.
The	 two	 direct	 competitors	 to	 R	 are	 MATLAB	 and	 Octave.	 MATLAB	 is	 a
commercial	 and	 proprietary	 programming	 language	 that	 is	 strong	 at	 solving
algebraic	equations	and	is	a	quick	programming	language	to	learn.	MATLAB	is
widely	 used	 in	 the	 fields	 of	 electrical	 engineering,	 chemical	 engineering,	 civil
engineering,	 and	 aeronautical	 engineering.	 Computer	 scientists	 and	 computer
engineers,	 however,	 tend	 not	 to	 use	MATLAB	 and	 especially	 in	 recent	 years.
MATLAB,	though,	is	still	widely	used	in	academia	for	machine	learning.	Thus,
while	you	may	see	MATLAB	featured	 in	online	courses	 for	machine	 learning,
and	especially	Coursera,	this	is	not	to	say	that	it’s	as	commonly	used	in	industry.
If,	 however,	 you’re	 coming	 from	 an	 engineering	 background,	 MATLAB	 is
certainly	a	logical	choice.
Lastly,	 there	 is	 Octave,	 which	 is	 essentially	 a	 free	 version	 of	 MATLAB
developed	in	response	to	MATLAB	by	the	open-source	community.

Compartment	3:	Algorithms
Now	 that	 the	 development	 environment	 is	 set	 up	 and	 you’ve	 chosen	 your
programming	 language	 and	 libraries,	 you	 can	 next	 import	 your	 data	 directly
from	a	CSV	file.	You	can	 find	hundreds	of	 interesting	datasets	 in	CSV	format
from	 kaggle.com.	After	 registering	 as	 a	Kaggle	member,	 you	 can	 download	 a
dataset	of	your	choosing.	Best	of	all,	Kaggle	datasets	are	free,	and	there’s	no	cost
to	 register	as	a	user.	The	dataset	will	download	directly	 to	your	computer	as	a
CSV	file,	which	means	you	can	use	Microsoft	Excel	to	open	and	even	perform
basic	algorithms	such	as	linear	regression	on	your	dataset.
Next	 is	 the	 third	 and	 final	 compartment	 that	 stores	 the	 machine	 learning
algorithms.	 Beginners	 typically	 start	 out	 using	 simple	 supervised	 learning
algorithms	such	as	 linear	 regression,	 logistic	 regression,	decision	 trees,	and	k	 -
nearest	neighbors.	Beginners	are	also	likely	to	apply	unsupervised	learning	in	the
form	of	k	-means	clustering	and	descending	dimension	algorithms.

Visualization
No	matter	 how	 impactful	 and	 insightful	 your	 data	 discoveries	 are,	 you	 need	 a
way	to	communicate	the	results	to	relevant	decision-makers.	This	is	where	data
visualization	 comes	 in	 handy	 to	 highlight	 and	 communicate	 findings	 from	 the

data	 to	 a	 general	 audience.	 The	 visual	 story	 conveyed	 through	 graphs,
scatterplots,	 heatmaps,	 box	 plots,	 and	 the	 representation	 of	 numbers	 as	 shapes
make	for	quick	and	easy	storytelling.
In	 general,	 the	 less	 informed	 your	 audience	 is,	 the	 more	 important	 it	 is	 to
visualize	your	findings.	Conversely,	if	your	audience	is	knowledgeable	about	the
topic,	 additional	 details	 and	 technical	 terms	 can	 be	 used	 to	 supplement	 visual
elements.	 To	 visualize	 your	 results,	 you	 can	 draw	 on	 a	 software	 program	 like
Tableau	 or	 a	 Python	 library	 such	 as	 Seaborn,	 which	 are	 stored	 in	 the	 second
compartment	of	the	toolbox.

The	Advanced	Toolbox
We	have	so	far	examined	 the	starter	 toolbox	for	a	beginner,	but	what	about	an
advanced	user?	What	does	their	toolbox	look	like?	While	it	may	take	some	time
before	you	get	to	work	with	more	advanced	tools,	it	doesn’t	hurt	to	take	a	sneak
peek.
The	advanced	 toolbox	comes	with	 a	broader	 spectrum	of	 tools	 and,	 of	 course,
data.	One	of	the	biggest	differences	between	a	beginner	and	an	expert	is	the	kind
of	 data	 they	manage	 and	 operate.	Beginners	work	with	 small	 datasets	 that	 are
easy	to	handle	and	downloaded	directly	 to	one’s	desktop	as	a	simple	CSV	file.
Advanced	 users,	 though,	 will	 be	 eager	 to	 tackle	massive	 datasets,	 well	 in	 the
vicinity	 of	 big	 data.	 This	 might	 mean	 that	 the	 data	 is	 stored	 across	 multiple
locations,	and	its	composition	is	streamed	(imported	and	analyzed	in	real-time)
rather	than	static,	which	makes	the	data	itself	a	moving	target.

Compartment	1:	Big	Data
Big	 data	 is	 used	 to	 describe	 a	 dataset	 that,	 due	 to	 its	 variety,	 volume,	 and
velocity,	defies	conventional	methods	of	processing	and	would	be	impossible	for
a	 human	 to	 process	 without	 the	 assistance	 of	 advanced	 technology.	 Big	 data
doesn’t	have	an	exact	definition	in	terms	of	size	or	a	minimum	threshold	of	rows
and	 columns.	 At	 the	 moment,	 petabytes	 qualify	 as	 big	 data,	 but	 datasets	 are
becoming	increasingly	bigger	as	we	find	new	ways	to	collect	and	store	data	at	a
lower	cost.
Big	data	is	also	less	likely	to	fit	into	standard	rows	and	columns	and	may	contain
numerous	data	 types,	 such	as	 structured	data	and	a	 range	of	unstructured	data,
i.e.	images,	videos,	email	messages,	and	audio	files.

Compartment	2:	Infrastructure
Given	 that	 advanced	 learners	 are	 dealing	with	 up	 to	 petabytes	 of	 data,	 robust

infrastructure	is	required.	Instead	of	relying	on	the	CPU	of	a	personal	computer,
the	experts	typically	turn	to	distributed	computing	and	a	cloud	provider	such	as
Amazon	 Web	 Services	 (AWS)	 or	 Google	 Cloud	 Platform	 to	 run	 their	 data
processing	on	a	virtual	graphics	processing	unit	(GPU).	As	a	specialized	parallel
computing	 chip,	GPU	 instances	 are	 able	 to	 perform	many	more	 floating-point
operations	per	second	than	a	CPU,	allowing	for	much	faster	solutions	with	linear
algebra	and	statistics	than	with	a	CPU.
GPU	chips	were	originally	added	to	PC	motherboards	and	video	consoles	such
as	 the	PlayStation	2	and	 the	Xbox	 for	gaming	purposes.	They	were	developed
to	 accelerate	 the	 rendering	 of	 	 images	 with	 millions	 of	 pixels	 whose	 frames
needed	 to	be	continuously	 recalculated	 to	display	output	 in	 less	 than	a	second.
By	2005,	GPU	chips	were	produced	in	such	large	quantities	that	prices	dropped
dramatically	 and	 they	 became	 almost	 a	 commodity.	 Although	 popular	 in	 the
video	game	 industry,	 their	 application	 in	 the	 space	of	machine	 learning	wasn’t
fully	understood	or	 realized	until	 quite	 recently.	Kevin	Kelly,	 in	his	novel	The
Inevitable:	 Understanding	 the	 12	 Technological	 Forces	 That	 Will	 Shape	 Our
Future	 ,	 explains	 that	 in	 2009,	Andrew	Ng	 and	 a	 team	 at	 Stanford	University
made	 a	 discovery	 to	 link	 inexpensive	 GPU	 clusters	 to	 run	 neural	 networks
consisting	of	hundreds	of	millions	of	connected	nodes.
“Traditional	 processors	 required	 several	 weeks	 to	 calculate	 all	 the	 cascading
possibilities	in	a	neural	net	with	one	hundred	million	parameters.	Ng	found	that	a
cluster	of	GPUs	could	accomplish	the	same	thing	in	a	day,”	explains	Kelly.	[12]
As	 mentioned,	 C	 and	 C++	 are	 the	 preferred	 languages	 to	 directly	 edit	 and
perform	 mathematical	 operations	 on	 the	 GPU.	 Python	 can	 also	 be	 used	 and
converted	 into	 C	 in	 combination	 with	 a	 machine	 learning	 library	 such	 as
TensorFlow	from	Google.	Although	it’s	possible	 to	run	TensorFlow	on	a	CPU,
you	can	gain	up	to	about	1,000x	in	performance	using	the	GPU.	Unfortunately
for	Mac	users,	TensorFlow	is	only	compatible	with	the	Nvidia	GPU	card,	which
is	no	 longer	available	with	Mac	OS	X.	Mac	users	can	 still	 run	TensorFlow	on
their	CPU	but	will	need	to	run	their	workload	on	the	cloud	if	they	wish	to	use	a
GPU.
Amazon	 Web	 Services,	 Microsoft	 Azure,	 Alibaba	 Cloud,	 Google	 Cloud
Platform,	and	other	cloud	providers	offer	pay-as-you-go	GPU	resources,	which
may	 also	 start	 off	 free	 using	 a	 free	 trial	 program.	 Google	 Cloud	 Platform	 is
currently	 regarded	 as	 a	 leading	 choice	 for	 virtual	 GPU	 resources	 based	 on
performance	and	pricing.	Google	also	announced	in	2016	that	it	would	publicly
release	a	Tensor	Processing	Unit	designed	specifically	for	running	TensorFlow,
which	is	already	used	internally	at	Google.

Compartment	3:	Advanced	Algorithms
To	 round	 out	 this	 chapter,	 let’s	 take	 a	 look	 at	 the	 third	 compartment	 of	 the
advanced	 toolbox	 containing	 machine	 learning	 algorithms.	 To	 analyze	 large
datasets	 and	 respond	 to	 complicated	 prediction	 tasks,	 advanced	 practitioners
work	 with	 a	 plethora	 of	 algorithms	 including	Markov	 models,	 support	 vector
machines,	 and	 Q-learning,	 as	 well	 as	 combinations	 of	 algorithms	 to	 create	 a
unified	model,	 known	as	 ensemble	modeling	 (explored	 further	 in	Chapter	15).
However,	 the	 algorithm	 family	 they’re	 most	 likely	 to	 work	 with	 is	 artificial
neural	networks	(introduced	in	Chapter	13),	which	comes	with	its	own	selection
of	advanced	machine	learning	libraries.
While	Scikit-learn	offers	a	range	of	popular	shallow	algorithms,	TensorFlow	is
the	 machine	 learning	 library	 of	 choice	 for	 deep	 learning/neural	 networks.	 It
supports	numerous	advanced	techniques	including	automatic	calculus	for	back-
propagation/gradient	descent.	The	depth	of	 resources,	 documentation,	 and	 jobs
available	with	TensorFlow	also	make	it	an	obvious	framework	to	learn.	Popular
alternative	 libraries	 for	 neural	 networks	 include	 Torch,	 Caffe,	 and	 the	 fast-
growing	Keras.
Written	in	Python,	Keras	is	an	open-source	deep	learning	library	that	runs	on	top
of	TensorFlow,	Theano,	 and	 other	 frameworks,	which	 allows	 users	 to	 perform
fast	 experimentation	 in	 fewer	 lines	 of	 code.	 Similar	 to	 a	 WordPress	 website
theme,	 Keras	 is	 minimal,	 modular,	 and	 quick	 to	 get	 up	 and	 running.	 It	 is,
however,	 less	 flexible	 in	 comparison	 to	 TensorFlow	 and	 other	 libraries.
Developers,	 therefore,	 will	 sometimes	 utilize	 Keras	 to	 validate	 their	 decision
model	before	switching	to	TensorFlow	to	build	a	more	customized	model.
Caffe	 is	 also	 open-source	 and	 is	 typically	 used	 to	 develop	 deep	 learning
architectures	 for	 image	 classification	 and	 image	 segmentation.	Caffe	 is	written
in	C++	but	has	 a	Python	 interface	 that	 supports	GPU-based	acceleration	using
the	Nvidia	cuDNN	chip.
Released	in	2002,	Torch	is	also	well	established	in	the	deep	learning	community
and	 is	 used	 at	 Facebook,	Google,	 Twitter,	NYU,	 IDIAP,	 Purdue	University	 as
well	 as	 other	 companies	 and	 research	 labs.	 [13]	 Based	 on	 the	 programming
language	 Lua,	 Torch	 is	 open-source	 and	 offers	 a	 range	 of	 algorithms	 and
functions	used	for	deep	learning.
Theano	was	another	competitor	to	TensorFlow	until	recently,	but	as	of	late	2017,
contributions	to	the	framework	have	officially	ceased.	[14]

5

DATA	SCRUBBING
Like	 most	 varieties	 of	 fruit,	 datasets	 need	 upfront	 cleaning	 and	 human
manipulation	 before	 they’re	 ready	 for	 consumption.	 The	 “clean-up”	 process
applies	to	machine	learning	and	many	other	fields	of	data	science	and	is	known
in	the	industry	as	data	scrubbing	.	This	is	the	technical	process	of	refining	your
dataset	to	make	it	more	workable.	This	might	involve	modifying	and	removing
incomplete,	 incorrectly	 formatted,	 irrelevant	 or	 duplicated	 data.	 It	 might	 also
entail	 converting	 text-based	 data	 to	 numeric	 values	 and	 the	 redesigning	 of
features.
For	data	practitioners,	data	scrubbing	typically	demands	the	greatest	application
of	time	and	effort.

Feature	Selection
To	 generate	 the	 best	 results	 from	 your	 data,	 it’s	 essential	 to	 identify	 which
variables	 are	 most	 relevant	 to	 your	 hypothesis	 or	 objective.	 In	 practice,	 this
means	 being	 selective	 in	 choosing	 the	 variables	 you	 include	 in	 your	 model.
Moreover,	 preserving	 features	 that	 don’t	 correlate	 strongly	 with	 the	 output
value	 can	 manipulate	 and	 derail	 the	 model’s	 accuracy.	 Let’s	 consider	 the
following	 data	 excerpt	 downloaded	 from	 kaggle.com	 documenting	 dying
languages.

Table	4:	Endangered	languages,	database:	https://www.kaggle.com/the-guardian/extinct-languages

Let’s	say	our	goal	is	to	identify	variables	that	contribute	to	a	language	becoming
endangered.	Based	on	the	purpose	of	our	analysis,	it’s	unlikely	that	a	language’s
“Name	in	Spanish”	will	lead	to	any	relevant	insight.	We	can	therefore	delete	this
vector	 (column)	 from	 the	dataset.	This	helps	 to	prevent	over-complication	 and
potential	 inaccuracies	 as	 well	 as	 improve	 the	 overall	 processing	 speed	 of	 the
model.
Secondly,	 the	 dataset	 contains	 duplicated	 information	 in	 the	 form	 of	 separate
vectors	 for	 “Countries”	 and	 “Country	Code.”	Analyzing	 both	 of	 these	 vectors
doesn’t	provide	any	additional	 insight;	hence,	we	can	choose	to	delete	one	and
retain	the	other.
Another	method	to	reduce	the	number	of	features	is	to	roll	multiple	features	into
one,	as	shown	in	the	following	example.

Table	5:	Sample	product	inventory

Contained	in	Table	5	is	a	list	of	products	sold	on	an	e-commerce	platform.	The
dataset	comprises	four	buyers	and	eight	products.	This	is	not	a	large	sample	size
of	buyers	and	products—due	in	part	to	the	spatial	limitations	of	the	book	format.
A	real-life	e-commerce	platform	would	have	many	more	columns	to	work	with
but	let’s	go	ahead	with	this	simplified	example.
To	analyze	the	data	more	efficiently,	we	can	reduce	the	number	of	columns	by
merging	 similar	 features	 into	 fewer	 columns.	 For	 instance,	 we	 can	 remove
individual	 product	 names	 and	 replace	 the	 eight	 product	 items	 with	 fewer
categories	or	subtypes.	As	all	product	items	fall	under	the	category	of	“fitness,”
we	can	sort	by	product	subtype	and	compress	 the	columns	from	eight	 to	 three.
The	three	newly	created	product	subtype	columns	are	“Health	Food,”	“Apparel,”
and	“Digital.”

Table	6:	Synthesized	product	inventory

This	 enables	 us	 to	 transform	 the	 dataset	 in	 a	way	 that	 preserves	 and	 captures
information	 using	 fewer	 variables.	The	 downside	 to	 this	 transformation	 is	 that
we	 have	 less	 information	 about	 the	 relationships	 between	 specific	 products.
Rather	 than	 recommending	 products	 to	 users	 according	 to	 other	 individual
products,	 recommendations	 will	 instead	 be	 based	 on	 associations	 between
product	subtypes	or	recommendations	of	the	same	product	subtype.
Nonetheless,	 this	 approach	 still	upholds	a	high	 level	of	data	 relevancy.	Buyers
will	be	recommended	health	food	when	they	buy	other	health	food	or	when	they
buy	apparel	(depending	on	the	degree	of	correlation),	and	obviously	not	machine
learning	 textbooks—unless	 it	 turns	 out	 that	 there	 is	 a	 strong	 correlation	 there!
But	alas,	such	a	variable/category	is	outside	the	frame	of	this	dataset.
Remember	that	data	reduction	is	also	a	business	decision	and	business	owners	in
counsel	 with	 their	 data	 science	 team	 must	 consider	 the	 trade-off	 between
convenience	and	the	overall	precision	of	the	model.

Row	Compression

In	addition	to	feature	selection,	you	may	need	to	reduce	the	number	of	rows	and
thereby	compress	the	total	number	of	data	points.	This	may	involve	merging	two
or	 more	 rows	 into	 one,	 as	 shown	 in	 the	 following	 dataset,	 with	 “Tiger”	 and
“Lion”	merged	and	renamed	as	“Carnivore.”

Table	7:	Example	of	row	merge

By	merging	 these	 two	 rows	 (Tiger	&	 Lion),	 the	 feature	 values	 for	 both	 rows
must	also	be	aggregated	and	recorded	in	a	single	row.	In	this	case,	it’s	possible	to
merge	 the	 two	 rows	 because	 they	 possess	 the	 same	 categorical	 values	 for	 all
features	 except	Race	Time—which	can	be	easily	 aggregated.	The	 race	 time	of
the	Tiger	and	the	Lion	can	be	added	and	divided	by	two.
Numeric	values	 are	normally	 easy	 to	 aggregate	given	 they	 are	not	 categorical.
For	instance,	 it	would	be	impossible	to	aggregate	an	animal	with	four	legs	and
an	animal	with	 two	 legs!	We	obviously	can’t	merge	 these	 two	animals	and	set
“three”	as	the	aggregate	number	of	legs.
Row	compression	can	also	be	challenging	to	implement	in	cases	where	numeric
values	 aren’t	 available.	 For	 example,	 the	 values	 “Japan”	 and	 “Argentina”	 are
very	difficult	 to	merge.	The	values	“Japan”	and	“South	Korea”	can	be	merged,
as	they	can	be	categorized	as	countries	from	the	same	continent,	“Asia”	or	“East
Asia.”	However,	 if	we	 add	 “Pakistan”	 and	 “Indonesia”	 to	 the	 same	group,	we
may	 begin	 to	 see	 skewed	 results,	 as	 there	 are	 significant	 cultural,	 religious,
economic,	and	other	dissimilarities	between	these	four	countries.
In	 summary,	 non-numeric	 and	 categorical	 row	 values	 can	 be	 problematic	 to

merge	 while	 preserving	 the	 true	 value	 of	 the	 original	 data.	 Also,	 row
compression	 is	 usually	 less	 attainable	 than	 feature	 compression	 and	 especially
for	datasets	with	a	high	number	of	features.

One-hot	Encoding
After	 finalizing	 the	 features	 and	 rows	 to	 be	 included	 in	 your	model,	 you	 next
want	 to	 look	 for	 text-based	 values	 that	 can	 be	 converted	 into	 numbers.	Aside
from	set	text-based	values	such	as	True/False	(that	automatically	convert	to	“1”
and	 “0”	 respectively),	 most	 algorithms	 are	 not	 compatible	 with	 non-numeric
data.
One	 method	 to	 convert	 text-based	 values	 into	 numeric	 values	 is	 one-hot
encoding	 ,	 which	 transforms	 values	 into	 binary	 form,	 represented	 as	 “1”	 or
“0”—“True”	or	“False.”	A	“0,”	representing	False,	means	that	the	value	does	not
belong	 to	 a	 given	 feature,	 whereas	 a	 “1”—True	 or	 “hot”—confirms	 that	 the
value	does	belong	to	that	feature.
Below	is	another	excerpt	from	the	dying	languages	dataset	which	we	can	use	to
observe	one-hot	encoding.

Table	8:	Endangered	languages

Before	we	begin,	note	that	the	values	contained	in	the	“No.	of	Speakers”	column
do	 not	 contain	 commas	 or	 spaces,	 e.g.,	 7,500,000	 and	 7	 500	 000.	 Although
formatting	makes	 large	numbers	 easier	 for	 human	 interpretation,	 programming
languages	don’t	require	such	niceties.	Formatting	numbers	can	lead	to	an	invalid
syntax	or	trigger	an	unwanted	result,	depending	on	the	programming	language—
so	remember	to	keep	numbers	unformatted	for	programming	purposes.	Feel	free,
though,	 to	 add	 spacing	 or	 commas	 at	 the	 data	 visualization	 stage,	 as	 this	will
make	 it	 easier	 for	 your	 audience	 to	 interpret	 and	 especially	 when	 presenting
large	numbers.
On	 the	 right-hand	 side	 of	 the	 table	 is	 a	 vector	 categorizing	 the	 degree	 of
endangerment	 of	 nine	 different	 languages.	 We	 can	 convert	 this	 column	 into
numeric	values	by	applying	the	one-hot	encoding	method,	as	demonstrated	in	the
subsequent	table.

Table	9:	Example	of	one-hot	encoding

Using	one-hot	encoding,	the	dataset	has	expanded	to	five	columns,	and	we	have
created	three	new	features	from	the	original	feature	(Degree	of	Endangerment).
We	have	also	set	each	column	value	to	“1”	or	“0,”	depending	on	the	value	of	the
original	 feature.	 This	 now	makes	 it	 possible	 for	 us	 to	 input	 the	 data	 into	 our
model	and	choose	from	a	broader	spectrum	of	machine	learning	algorithms.	The
downside	 is	 that	 we	 have	 more	 dataset	 features,	 which	 may	 slightly	 extend
processing	time.	This	is	usually	manageable	but	can	be	problematic	for	datasets

where	the	original	features	are	split	into	a	large	number	of	new	features.
One	hack	to	minimize	the	total	number	of	features	is	to	restrict	binary	cases	to	a
single	 column.	 As	 an	 example,	 a	 speed	 dating	 dataset	 on	 kaggle.com	 lists
“Gender”	in	a	single	column	using	one-	hot	encoding.	Rather	than	create	discrete
columns	for	both	“Male”	and	“Female,”	they	merged	these	two	features	into	one.
According	to	the	dataset’s	key,	females	are	denoted	as	“0”	and	males	as	“1.”	The
creator	of	the	dataset	also	used	this	technique	for	“Same	Race”	and	“Match.”

Table	10:	Speed	dating	results,	database:	https://www.kaggle.com/annavictoria/speed-dating-experiment

Binning
Binning	(also	called	bucketing)	is	another	method	of	feature	engineering	but	is
used	 for	 converting	 continuous	 numeric	 values	 into	 multiple	 binary	 features
called	bins	or	buckets	according	to	their	range	of	values.
Whoa,	 hold	 on!	 Aren’t	 numeric	 values	 a	 good	 thing?	 Yes,	 in	 most	 cases
continuous	numeric	values	are	preferred	as	 they	are	compatible	with	a	broader
selection	 of	 algorithms.	 Where	 numeric	 values	 are	 not	 ideal,	 is	 in	 situations
where	they	list	variations	irrelevant	to	the	goals	of	your	analysis.

Let’s	 take	house	price	evaluation	as	an	example.	The	exact	measurements	of	a
tennis	court	might	not	matter	much	when	evaluating	house	property	prices;	 the
relevant	 information	 is	 whether	 the	 property	 has	 a	 tennis	 court.	 This	 logic
probably	also	applies	to	the	garage	and	the	swimming	pool,	where	the	existence
or	non-existence	of	the	variable	is	generally	more	influential	than	their	specific
measurements.
The	 solution	 here	 is	 to	 replace	 the	 numeric	measurements	 of	 the	 tennis	 court
with	a	True/False	feature	or	a	categorical	value	such	as	“small,”	“medium,”	and
“large.”	Another	 alternative	would	 be	 to	 apply	 one-hot	 encoding	with	 “0”	 for
homes	that	do	not	have	a	 tennis	court	and	“1”	for	homes	 that	do	have	a	 tennis
court.

Normalization
While	 machine	 learning	 algorithms	 can	 run	 without	 using	 the	 next	 two
techniques,	normalization	and	 standardization	help	 to	 improve	model	 accuracy
when	 used	 with	 the	 right	 algorithm.	 The	 former	 (normalization)	 rescales	 the
range	of	values	for	a	given	feature	into	a	set	range	with	a	prescribed	minimum
and	maximum,	such	as	[0,	1]	or	[−1,	1].	By	containing	the	range	of	the	feature,
this	 technique	 helps	 to	 normalize	 the	 variance	 among	 the	 dataset’s	 features
which	may	otherwise	be	exaggerated	by	another	factor.	The	variance	of	a	feature
measured	in	centimeters,	for	example,	might	distract	the	algorithm	from	another
feature	with	a	similar	or	higher	degree	of	variance	but	that	is	measured	in	meters
or	another	metric	that	downplays	the	actual	variance	of	the	feature.
Normalization,	however,	usually	 isn’t	 recommended	for	 rescaling	features	with
an	extreme	range	as	the	normalized	range	is	too	narrow	to	emphasize	extremely
high	or	low	feature	values.

Standardization
A	better	technique	for	emphasizing	high	or	low	feature	values	is	standardization.
This	 technique	 converts	 unit	 variance	 to	 a	 standard	 normal	 distribution	with	 a
mean	 of	 zero	 and	 a	 standard	 deviation	 (σ)	 of	 one.	 [15]	 This	 means	 that	 an
extremely	 high	 or	 low	 value	 would	 be	 expressed	 as	 three	 or	 more	 standard
deviations	from	the	mean.

Figure	10:	Examples	of	rescaled	data	using	normalization	and	standardization

Standardization	 is	 generally	 more	 effective	 than	 normalization	 when	 the
variability	of	the	feature	reflects	a	bell-curve	shape	of	normal	distribution	and	is
often	 used	 in	 unsupervised	 learning.	 In	 other	 situations,	 normalization	 and
standardization	can	be	applied	separately	and	compared	for	accuracy.
Standardization	generally	recommended	when	preparing	data	for	support	vector
machines	(SVM),	principal	component	analysis	(PCA),	and	k	-nearest	neighbors
(k	-NN).

Missing	Data
Dealing	 with	 missing	 data	 is	 never	 a	 desired	 situation.	 Imagine	 unpacking	 a
jigsaw	 puzzle	with	 five	 percent	 of	 the	 pieces	missing.	Missing	 values	 in	 your
dataset	 can	 be	 equally	 frustrating	 and	 interfere	 with	 your	 analysis	 and	 the
model’s	 predictions.	 There	 are,	 however,	 strategies	 to	 minimize	 the	 negative
impact	of	missing	data.
One	approach	is	to	approximate	missing	values	using	the	mode	value.	The	mode
represents	the	single	most	common	variable	value	available	in	the	dataset.	This
works	best	with	 categorical	 and	binary	variable	 types,	 such	 as	one	 to	 five-star
rating	systems	and	positive/negative	drug	tests	respectively.

Figure	11:	A	visual	example	of	the	mode	and	median	respectively

The	second	approach	is	to	approximate	missing	values	using	the	median	value,
which	adopts	the	value(s)	 located	in	the	middle	of	 the	dataset.	This	works	best
with	 continuous	 variables,	 which	 have	 an	 infinite	 number	 of	 possible	 values,
such	as	house	prices.
As	 a	 last	 resort,	 rows	 with	 missing	 values	 can	 be	 removed	 altogether.	 The
obvious	downside	to	this	approach	is	having	less	data	to	analyze	and	potentially
less	comprehensive	insight.

6

SETTING	UP	YOUR	DATA
After	cleaning	your	dataset,	the	next	job	is	to	split	the	data	into	two	segments	for
training	and	testing,	also	known	as	split	validation	.	The	ratio	of	the	two	splits	is
usually	70/30	or	80/20.	This	means,	assuming	that	your	variables	are	expressed
horizontally	and	instances	vertically	(as	shown	in	Figure	12),	that	your	training
data	should	account	for	70	percent	to	80	percent	of	the	rows	in	your	dataset,	and
the	remaining	20	percent	to	30	percent	of	rows	are	left	for	your	test	data.

Figure	12:	70/30	partitioning	of	training	and	test	data

While	 it’s	 common	 to	 split	 the	 data	 70/30	 or	 80/20,	 there	 is	 no	 set	 rule	 for
preparing	a	training-test	split.	Given	the	growing	size	of	modern	datasets	(with
upwards	of	a	million	or	more	rows),	it	might	be	optimal	to	use	a	less	even	split
such	as	90/10	as	this	will	give	you	more	data	to	train	your	model	while	having

enough	data	left	over	to	test	your	model.
Before	you	split	your	data,	it’s	essential	that	you	randomize	the	row	order.	This
helps	 to	 avoid	 bias	 in	 your	model,	 as	 your	 original	 dataset	might	 be	 arranged
alphabetically	or	sequentially	according	 to	when	 the	data	was	collected.	 If	you
don’t	 randomize	 the	data,	you	may	accidentally	omit	 significant	variance	 from
the	training	data	that	can	cause	unwanted	surprises	when	you	apply	the	training
model	to	your	test	data.	Fortunately,	Scikit-learn	provides	a	built-in	command	to
shuffle	and	 randomize	your	data	with	 just	one	 line	of	code	as	demonstrated	 in
Chapter	17.
After	randomizing	the	data,	you	can	begin	to	design	your	model	and	apply	it	to
the	training	data.	The	remaining	30	percent	or	so	of	data	 is	put	 to	 the	side	and
reserved	 for	 testing	 the	 accuracy	 of	 the	model	 later;	 it’s	 imperative	 not	 to	 test
your	model	with	the	same	data	you	used	for	training.	In	the	case	of	supervised
learning,	 the	model	 is	developed	by	 feeding	 the	machine	 the	 training	data	 and
analyzing	relationships	between	the	features	(X)	of	 the	input	data	and	the	final
output	(y).
The	next	step	is	to	measure	how	well	the	model	performed.	There	is	a	range	of
performance	metrics	and	choosing	the	right	method	depends	on	the	application
of	the	model.	Area	under	the	curve	(AUC)	–	Receiver	Operating	Characteristic
(ROC)	 [16]	 ,	 confusion	 matrix,	 recall,	 and	 accuracy	 are	 four	 examples	 of
performance	 metrics	 used	 with	 classification	 tasks	 such	 as	 an	 email	 spam
detection	 system.	Meanwhile,	mean	 absolute	 error	 and	 root	mean	 square	 error
(RMSE)	are	commonly	used	to	assess	models	that	provide	a	numeric	output	such
as	a	predicted	house	value.
In	this	book,	we	use	mean	absolute	error	(MAE),	which	measures	the	average	of
the	errors	in	a	set	of	predictions	on	a	numeric/continuous	scale,	i.e.	how	far	is	the
regression	hyperplane	 to	 a	given	data	point.	Using	Scikit-learn,	mean	absolute
error	is	found	by	inputting	the	X	values	from	the	training	data	into	the	model	and
generating	 a	 prediction	 for	 each	 row	 in	 the	 dataset.	 Scikit-learn	 compares	 the
predictions	 of	 the	 model	 to	 the	 correct	 output	 (y)	 and	 measures	 the	 model’s
accuracy.	 You’ll	 know	 that	 the	 model	 is	 accurate	 when	 the	 error	 rate	 for	 the
training	and	test	dataset	is	low,	which	means	the	model	has	learned	the	dataset’s
underlying	trends	and	patterns.	If	the	average	recorded	MAE	or	RMSE	is	much
higher	using	the	test	data	than	the	training	data,	 this	 is	usually	an	indication	of
overfitting	 (discussed	 in	 Chapter	 11)	 in	 the	 model.	 Once	 the	 model	 can
adequately	predict	the	values	of	the	test	data,	it’s	ready	to	use	in	the	wild.
If	the	model	fails	to	predict	values	from	the	test	data	accurately,	check	that	the
training	 and	 test	 data	 were	 randomized.	 Next,	 you	 may	 need	 to	 modify	 the

model's	 hyperparameters.	 Each	 algorithm	 has	 hyperparameters;	 these	 are	 your
algorithm’s	learning	settings(and	not	the	settings	of	the	actual	model	itself).	In
simple	 terms,	 hyperparameters	 control	 and	 impact	 how	 fast	 the	 model	 learns
patterns	 and	 which	 patterns	 to	 identify	 and	 analyze.	 Discussion	 of	 algorithm
hyperparameters	and	optimization	is	discussed	in	Chapter	11	and	Chapter	18.

Cross	Validation
While	split	validation	can	be	effective	for	developing	models	using	existing	data,
question	marks	naturally	arise	over	whether	the	model	can	remain	accurate	when
used	 on	 new	 data.	 If	 your	 existing	 dataset	 is	 too	 small	 to	 construct	 a	 precise
model,	or	 if	 the	 training/test	partition	of	data	 is	not	appropriate,	 this	may	 later
lead	to	poor	predictions	with	live	data.
Fortunately,	 there	 is	a	valid	workaround	for	 this	problem.	Rather	 than	split	 the
data	into	two	segments	(one	for	training	and	one	for	testing),	you	can	implement
what’s	 called	cross	 validation	 .	 Cross	 validation	maximizes	 the	 availability	 of
training	data	by	splitting	data	into	various	combinations	and	testing	each	specific
combination.
Cross	validation	can	be	performed	using	one	of	two	primary	methods.	The	first
method	 is	 exhaustive	 cross	 validation	 ,	 which	 involves	 finding	 and	 testing	 all
possible	combinations	to	divide	the	original	sample	into	a	training	set	and	a	test
set.	 The	 alternative	 and	 more	 common	 method	 is	 non-exhaustive	 cross
validation,	known	as	k-fold	validation	.	The	k	-fold	validation	technique	involves
splitting	 data	 into	 k	 assigned	 buckets	 and	 reserving	 one	 of	 those	 buckets	 for
testing	the	training	model	at	each	round.
To	perform	k	-fold	validation,	data	are	randomly	assigned	to	k	number	of	equal-
sized	buckets.	One	bucket	is	reserved	as	the	test	bucket	and	is	used	to	measure
and	evaluate	the	performance	of	the	remaining	(k	-1)	buckets.

Figure	13:	k	-fold	validation

The	cross	validation	technique	is	repeated	k	number	of	times	(“folds”).	At	each
fold,	 one	 bucket	 is	 reserved	 to	 test	 the	 training	model	 generated	 by	 the	 other
buckets.	The	process	 is	 repeated	until	 all	 buckets	 have	been	utilized	 as	 both	 a
training	and	test	set.	The	results	are	then	aggregated	and	combined	to	formulate
a	single	model.
By	 using	 all	 available	 data	 for	 both	 training	 and	 testing	 and	 averaging	 the
model’s	outputs,	the	k	-fold	validation	technique	minimizes	the	prediction	error
normally	incurred	by	relying	on	a	fixed	training-test	split.	This	method,	though,
is	slower	because	the	training	process	is	multiplied	by	the	number	of	validation
sets.

How	Much	Data	Do	I	Need?
A	common	question	 for	students	starting	out	 in	machine	 learning	 is	how	much
data	do	I	need	to	train	my	model?	In	general,	machine	learning	works	best	when
your	training	dataset	includes	a	full	range	of	feature	combinations.
What	does	a	 full	 range	of	 feature	combinations	 look	 like?	 Imagine	you	have	a
dataset	about	data	scientists	categorized	into	the	following	features:
-	University	degree	(X)
-	5+	years	of	professional	experience	(X)

-	Children	(X)
-	Salary	(y)
To	 assess	 the	 relationship	 that	 the	 first	 three	 features	 (X)	 have	 to	 a	 data
scientist’s	 salary	 (y),	 we	 need	 a	 dataset	 that	 includes	 the	 y	 value	 for	 each
combination	 of	 features.	 For	 instance,	 we	 need	 to	 know	 the	 salary	 for	 data
scientists	with	a	university	degree	and	5+	years	of	professional	experience	who
don’t	have	 children,	 as	well	 as	 data	 scientists	with	 a	 university	 degree	 and	5+
years	of	professional	experience	that	do	have	children.
The	more	available	combinations	in	the	dataset,	the	more	effective	the	model	is
at	capturing	how	each	attribute	affects	y	(the	data	scientist’s	salary).	This	ensures
that	when	it	comes	to	putting	the	model	into	practice	on	the	test	data	or	live	data,
it	won’t	unravel	at	the	sight	of	unseen	combinations.
At	 an	 absolute	 minimum,	 a	 basic	 machine	 learning	model	 should	 contain	 ten
times	as	many	data	points	as	the	total	number	of	features.	So,	for	a	small	dataset
with	5	features,	 the	training	data	should	ideally	have	at	 least	50	rows.	Datasets
with	a	large	number	of	features,	though,	require	a	higher	number	of	data	points
as	combinations	grow	exponentially	with	more	variables.
Generally,	 the	more	relevant	data	you	have	available	as	training	data,	 the	more
combinations	you	can	incorporate	into	your	prediction	model,	which	can	help	to
produce	more	 accurate	 predictions.	 In	 some	 cases,	 it	might	 not	 be	 possible	 or
cost-effective	 to	 source	 data	 covering	 all	 possible	 combinations,	 and	 you	may
have	 to	make	 do	with	what	 you	 have	 at	 your	 disposal.	 Conversely,	 there	 is	 a
natural	 diminishing	 rate	 of	 return	 after	 an	 adequate	 volume	 of	 training	 data
(that’s	widely	representative	of	the	problem)	has	been	reached.
The	 last	 important	 consideration	 is	 matching	 your	 data	 to	 an	 algorithm.	 For
datasets	with	less	than	10,000	samples,	clustering	and	dimensionality	reduction
algorithms	can	be	highly	effective,	whereas	regression	analysis	and	classification
algorithms	are	more	suitable	for	datasets	with	less	than	100,000	samples.	Neural
networks	 require	 even	 more	 samples	 to	 run	 effectively	 and	 are	 more	 cost-
effective	and	time-efficient	for	working	with	massive	quantities	of	data.
For	more	information,	Scikit-learn	has	a	cheat-sheet	for	matching	algorithms	to
different	datasets	at	http://scikit-learn.org/stable/tutorial/machine_learning_map/.

The	following	chapters	examine	specific	algorithms	commonly	used	in	machine
learning.	Please	note	that	I	include	some	equations	out	of	necessity,	and	I	have
tried	 to	 keep	 them	 as	 simple	 as	 possible.	 Many	 of	 the	 machine	 learning
techniques	that	are	discussed	in	this	book	already	have	working	implementations
in	your	programming	language	of	choice	with	no	equation	solving	required.

You	 can	 also	 find	 video	 tutorials	 on	 how	 to	 code	 models	 in	 Python	 using
algorithms	 mentioned	 in	 this	 book.	 You	 can	 find	 these	 free	 video	 tutorials	 at
https://scatterplotpress.teachable.com/p/ml-code-exercises	.

https://scatterplotpress.teachable.com/p/ml-code-exercises

7

LINEAR	REGRESSION
As	the	“Hello	World”	of	supervised	learning	algorithms,	regression	analysis	is	a
simple	 technique	 for	 predicting	 an	 unknown	 variable	 using	 the	 results	 you	 do
know.	The	 first	 regression	 technique	we’ll	 examine	 is	 linear	 regression,	which
generates	a	straight	line	to	describe	linear	relationships.	We’ll	start	by	examining
the	basic	components	of	simple	linear	regression	with	one	independent	variable
before	discussing	multiple	regression	with	multiple	independent	variables.
Using	 the	Seinfeld	TV	sitcom	series	as	our	data,	 let’s	 start	by	plotting	 the	 two
following	variables,	with	season	number	as	the	x	coordinate	and	the	number	of
viewers	per	season	(in	millions)	as	the	y	coordinate.

Table	11:	Seinfeld	dataset

Figure	14:	Seinfeld	dataset	plotted	on	a	scatterplot

We	can	now	see	 the	dataset	plotted	on	 the	scatterplot,	with	an	upward	 trend	 in
viewers	starting	at	season	4	and	the	peak	at	season	9.
Let’s	 next	 define	 the	 independent	 and	 dependent	 variables.	 For	 this	 example,
we’ll	use	the	number	of	viewers	per	season	as	the	dependent	variable	(what	we
want	to	predict)	and	the	season	number	as	the	independent	variable.
Using	 simple	 linear	 regression,	 let’s	 now	 insert	 a	 straight	 line	 to	 describe	 the
upward	linear	trend	of	our	small	dataset.

Figure	15:	Linear	regression	hyperplane	

As	shown	in	Figure	15,	 this	regression	line	neatly	dissects	 the	full	company	of
data	 points.	 The	 technical	 term	 for	 the	 regression	 line	 is	 the	hyperplane	 ,	 and
you’ll	see	 this	 term	used	throughout	your	study	of	machine	learning.	In	a	 two-
dimensional	 space,	 a	 hyperplane	 serves	 as	 a	 (flat)	 trendline,	 which	 is	 how
Google	Sheets	titles	linear	regression	in	their	scatterplot	customization	menu.
The	 goal	 of	 linear	 regression	 is	 to	 split	 the	 data	 in	 a	 way	 that	minimizes	 the
distance	between	the	hyperplane	and	the	observed	values.	This	means	that	if	you
were	to	draw	a	perpendicular	line	(a	straight	line	at	an	angle	of	90	degrees)	from
the	 hyperplane	 to	 each	 data	 point	 on	 the	 plot,	 the	 aggregate	 distance	 of	 each
point	 would	 equate	 to	 the	 smallest	 possible	 distance	 to	 the	 hyperplane.	 The
distance	between	the	best	fit	line	and	the	observed	values	is	called	the	residual	or
error	 and	 the	 closer	 those	 values	 are	 to	 the	 hyperplane,	 the	more	 accurate	 the
model’s	predictions.

Figure	16:	Error	is	the	distance	between	the	hyperplane	and	the	observed	value

The	Slope
An	important	part	of	linear	regression	is	 the	slope	 ,	which	can	be	conveniently
calculated	 by	 referencing	 the	 hyperplane.	As	 one	 variable	 increases,	 the	 other
variable	will	increase	by	the	average	value	denoted	by	the	hyperplane.	The	slope
is	therefore	helpful	for	formulating	predictions,	such	as	predicting	the	number	of
season	viewers	for	a	potential	tenth	season	of	Seinfeld.	Using	the	slope,	we	can
input	10	as	 the	x	coordinate	and	 find	 the	corresponding	y	value,	which	 in	 this
case,	is	approximately	40	million	viewers.

Figure	17:	Using	the	slope/hyperplane	to	make	a	prediction

While	 linear	 regression	 isn’t	 a	 fail-proof	 method	 for	 predicting	 trends,	 the
trendline	 does	 offer	 a	 basic	 reference	 point	 for	 predicting	 unknown	 or	 future
events.

Linear	Regression	Formula
The	formula	[17]	for	linear	regression	is	y	=	bx	+	a.
“y”	 represents	 the	 dependent	 variable	 and	 “x”	 represents	 the	 independent
variable.
“a”	is	the	point	where	the	hyperplane	crosses	the	y-axis,	known	as	the	y-intercept
or	the	value	of	y	when	x	=	0.
“b”	dictates	 the	 steepness	of	 the	 slope	and	explains	 the	 relationship	between	x
and	y	(what	change	in	y	is	predicted	for	1	unit	change	in	x).

Calculation	Example
Although	 your	 programming	 language	 takes	 care	 of	 this	 automatically,	 it’s
interesting	to	know	how	simple	linear	regression	works.	We’ll	use	the	following
dataset	to	break	down	the	formula.

Table	12:	Sample	dataset
#	The	final	two	columns	of	the	table	are	not	part	of	the	original	dataset	and	have	been	added	for	reference	to
complete	the	following	formula.

Where:
Σ	=	Total	sum
Σx	=	Total	sum	of	all	x	values	(1	+	2	+	1	+	4	+	3	=	11)
Σy	=	Total	sum	of	all	y	values	(3	+	4	+	2	+	7	+	5	=	21)
Σxy	=	Total	sum	of	x*y	for	each	row	(3	+	8	+	2	+	28	+	15	=	56)
Σx2	=	Total	sum	of	x*x	for	each	row	(1	+	4	+	1	+	16	+	9	=	31)
n	=	Total	number	of	rows.	In	the	case	of	this	example,	n	is	equal	to	5.

a	=
((21	x	31)	–	(11	x	56))	/	(5(31)	–	112)
(651	–	616)	/	(155	–	121)
35	/	34	=	1.029

b	=
(5(56)	–	(11	x	21))	/	(5(31)	–	112)
(280	–	231)	/	(155	–	121)
49	/	34	=	1.441

Insert	the	“a”	and	“b”	values	into	the	linear	formula.
y	=	bx	+	a
y	=	1.441x	+	1.029

The	linear	formula	y	=	1.441x	+	1.029	dictates	how	to	draw	the	hyperplane.

Let’s	now	test	the	linear	regression	model	by	looking	up	the	coordinates	for	x	=
2.
y	=	1.441(x)	+	1.029
y	=	1.441(2)	+	1.029
y	=	3.911
In	this	case,	the	prediction	is	very	close	to	the	actual	result	of	4.0.

Figure	18:	y	=	1.441x	+	1.029	plotted	on	the	scatterplot

Multiple	Linear	Regression
Having	summarized	simple	linear	regression	using	a	single	independent	variable,
we	 can	 now	 look	 at	multiple	 linear	 regression.	This	 second	 technique	 is	more
applicable	 to	 machine	 learning	 given	 organizations	 use	 more	 than	 one
independent	variable	to	make	decisions.

Multiple	 linear	 regression	 is	 simple	 linear	 regression	 but	 with	 more	 than	 one
independent	variable	as	the	following	formula	shows.

The	y-intercept	 is	 still	 expressed	 as	 a,	 but	 now	 there	 are	multiple	 independent
variables	 (represented	 as	 x1	 ,	 x2	 ,	 x3	 ,	 etc.)	 and	 each	with	 their	 own	 respected
coefficient	(b1	,	b2	,	b3,	etc).
As	 with	 simple	 linear	 regression,	 various	 sums	 of	 X	 and	 y	 values	 (including
squared	values)	from	the	training	data	are	used	to	solve	for	a	(y-intercept)	and	b
(coefficient	values).
Once	a	model	has	been	built	using	the	X	and	y	values	from	the	training	data,	the
multiple	linear	regression	formula	can	be	used	to	make	a	prediction	(y)	using	the
X	values	from	the	test	data	(to	assess	accuracy).

Discrete	Variables
While	the	output	(dependent	variable)	of	linear	regression	must	be	continuous	in
the	 form	 of	 a	 floating-point	 or	 integer	 (whole	 number)	 value,	 the	 input
(independent	 variables)	 can	 be	 continuous	 or	 categorical.	 For	 categorical
variables,	i.e.	gender,	these	variables	must	be	expressed	numerically	using	one-
hot	encoding	(0	or	1)	and	not	as	a	string	of	letters	(male,	female).

Variable	Selection
Before	 finishing	 this	chapter,	 it’s	 important	 to	address	 the	dilemma	of	variable
selection	and	choosing	an	appropriate	number	of	independent	variables.	On	the
one	hand,	adding	more	variables	helps	to	account	for	more	potential	factors	that
control	patterns	 in	 the	data.	On	 the	other	hand,	 this	 rationale	only	holds	 if	 the
variables	are	 relevant	 and	possess	 some	correlation/linear	 relationship	with	 the
dependent	variable.
The	 expansion	 of	 independent	 variables	 also	 creates	 more	 relationships	 to
consider.	In	simple	linear	regression,	we	saw	a	one-to-one	relationship	between
two	 variables,	 whereas	 in	 multiple	 linear	 regression	 there	 is	 a	 many-to-one
relationship.	In	multiple	linear	regression,	not	only	are	the	independent	variables
potentially	related	to	the	dependent	variable,	but	they	are	also	potentially	related
to	each	other.

Figure	19:	Simple	linear	regression	(above)	and	multiple	linear	regression	(below)

If	a	strong	linear	correlation	exists	between	two	independent	variables,	this	can
lead	to	a	problem	called	multi-collinearity.	When	two	independent	variables	are
strongly	correlated,	 they	have	a	 tendency	 to	cancel	each	other	out	and	provide
the	model	with	little	to	no	unique	information.
An	 example	 of	 two	 multi-collinear	 variables	 are	 liters	 of	 fuel	 consumed	 and
liters	of	fuel	in	the	tank	to	predict	how	far	a	jet	plane	will	fly.	Both	independent
variables	 are	 directly	 correlated,	 and	 in	 this	 case	 negatively	 correlated;	 as	 one
variables	 increases,	 the	 other	 variable	 decreases	 and	 vice	 versa.	 When	 both
variables	are	used	 to	predict	 the	dependent	variable	of	how	far	 the	 jet	will	 fly,
one	effectively	cancels	the	other	out.	It’s	still	worthwhile	to	include	one	of	these
variables	in	the	model,	but	it	would	be	redundant	to	include	both	variables.
To	 avoid	 multi-collinearity,	 we	 need	 to	 check	 the	 relationship	 between	 each
combination	 of	 independent	 variables	 using	 a	 scatterplot,	 pairplot	 (a	matrix	 of
relationships	between	variables),	or	correlation	score.
If	we	look	at	the	pairplot	in	Figure	20,	we	can	analyze	the	relationship	between
all	 three	 variables	 (total_bill,	 tip,	 and	 size).	 If	 we	 set	 tip	 as	 the	 dependent
variable,	 then	 we	 need	 to	 assess	 whether	 the	 two	 independent	 variables
(total_bill	and	size)	are	strongly	correlated.	Using	our	pairplot,	we	can	see	there
are	two	scatterplots	visualizing	the	relationship	between	total_bill	and	size	(row
1	on	the	right,	and	row	3	on	the	left).	These	two	plots	are	not	identical	(as	the	x-
and	y-axis	are	inverted),	but	you	can	refer	to	either	one.

Figure	20:	Pairplot	with	three	variables

Judging	 by	 the	 upward	 linear	 trend,	 we	 can	 see	 that	 these	 two	 variables	 are
partly	correlated.	However,	 if	we	were	 to	 insert	a	 linear	regression	hyperplane,
there	 would	 be	 significant	 residuals/error	 on	 both	 sides	 of	 the	 hyperplane	 to
confirm	that	these	two	variables	aren’t	strongly	or	directly	correlated	and	we	can
definitely	include	both	these	variables	in	our	regression	model.
The	following	heatmap,	shown	in	Figure	21,	also	confirms	a	modest	correlation
score	of	0.6	between	total_bill	and	size.

Figure	21:	Heatmap	with	three	variables

We	 can	 also	 use	 a	 pairplot,	 heatmap	 or	 correlation	 score	 to	 check	 if	 the
independent	 variables	 are	 correlated	 to	 the	 dependent	 variable	 (and	 therefore
relevant	 to	 the	 prediction	 outcome).	 In	 Figure	 21,	 we	 can	 see	 that	 total_bill
(0.68)	and	size	(0.49)	show	some	correlation	with	the	dependent	variable	of	tip.
(Correlation	is	measured	between	-1	and	1,	with	a	correlation	of	1	describing	a
perfect	positive	relationship	and	a	correlation	of	-1	indicating	a	perfect	negative
relationship.	A	coefficient	of	0,	meanwhile,	denotes	no	relationship	between	two
variables.)
In	summary,	the	objective	of	multiple	linear	regression	is	for	all	the	independent
variables	to	be	correlated	with	the	dependent	variable	but	not	with	each	other.

CHAPTER	QUIZ

Using	multiple	linear	regression	,	your	task	is	to	create	a	model	to	predict	the
tip	amount	guests	will	leave	the	restaurant	when	paying	for	their	meal.	Note	that
this	is	a	snippet	of	the	actual	dataset	and	the	full	dataset	has	244	rows	(diners).

1)					The	dependent	variable	for	this	model	should	be	which	variable?
A)						size
B)						total_bill	and	tip
C)						total_bill
D)						tip

2)					From	looking	only	at	the	data	preview	above,	which	variable(s)	appear
to	have	a	linear	relationship	with	total_bill?
A)						smoker
B)						total_bill	and	size
C)						time
D)						smoker

3)	 	 	 	 	It’s	 important	for	the	 independent	variables	 to	be	strongly	correlated

with	the	dependent	variable	and	one	or	more	of	 the	other	 independent
variables.	True	or	False?

ANSWERS
1)						D,	tip

2)						B,	total_bill	and	size

(When	 there	 is	 an	 increase	 in	 both	 of	 these	 variables,	 we	 see	 a	 general
increase	in	the	tip	for	most	rows.	Other	variables	might	be	correlated	to	tip,
but	it’s	not	clear	to	judge	using	only	these	10	rows.)

3)						False

(Ideally,	 the	 independent	 variables	 should	 not	 be	 strongly	 correlated	 with
each	other.)

8

LOGISTIC	REGRESSION
As	 demonstrated	 in	 the	 previous	 chapter,	 linear	 regression	 is	 useful	 for
quantifying	 relationships	 between	 variables	 to	 predict	 a	 continuous	 outcome.
Total	bill	and	size	(number	of	guests)	are	both	examples	of	continuous	variables.
However,	 what	 if	 we	 want	 to	 predict	 a	 categorical	 variable	 such	 as	 “new
customer”	 or	 “returning	 customer”?	 Unlike	 linear	 regression,	 the	 dependent
variable	 (y)	 is	 no	 longer	 a	 continuous	 variable	 (such	 as	 total	 tip)	 but	 rather	 a
discrete	categorical	variable.
Rather	than	quantify	the	linear	relationship	between	variables,	we	need	to	use	a
classification	technique	such	as	logistic	regression.
Logistic	 regression	 is	 still	 a	 supervised	 learning	 technique	 but	 produces	 a
qualitative	 prediction	 rather	 than	 a	 quantitative	 prediction.	 This	 algorithm	 is
often	used	to	predict	two	discrete	classes,	e.g.,	pregnant	or	not	pregnant	.	Given
its	 strength	 in	 binary	 classification,	 logistic	 regression	 is	 used	 in	 many	 fields
including	 fraud	detection,	 disease	diagnosis,	 emergency	detection,	 loan	default
detection,	 or	 to	 identify	 spam	email	 through	 the	process	of	 discerning	 specific
classes,	e.g.,	non-spam	and	spam.
Using	 the	 sigmoid	 function,	 logistic	 regression	 finds	 the	 probability	 of
independent	 variables	 (X)	 producing	 a	 discrete	 dependent	 variable	 (y)	 such	 as
“spam”	or	“non-spam.”

	
Where:
x	=	the	independent	variable	you	wish	to	transform
e	=	Euler's	constant,	2.718

Figure	22:	A	sigmoid	function	used	to	classify	data	points

The	sigmoid	function	produces	an	S-shaped	curve	that	can	convert	any	number
and	map	 it	 into	 a	 numerical	 value	 between	 0	 and	 1	 but	without	 ever	 reaching
those	 exact	 limits.	 Applying	 this	 formula,	 the	 sigmoid	 function	 converts
independent	 variables	 into	 an	 expression	 of	 probability	 between	 0	 and	 1	 in
relation	 to	 the	dependent	variable.	 In	a	binary	case,	 a	value	of	0	 represents	no
chance	of	occurring,	and	1	represents	a	certain	chance	of	occurring.	The	degree
of	probability	for	values	located	between	0	and	1	can	be	found	according	to	how
close	they	rest	to	0	(impossible)	or	1	(certain	possibility).
Based	on	the	found	probabilities	of	the	independent	variables,	logistic	regression
assigns	 each	 data	 point	 to	 a	 discrete	 class.	 In	 the	 case	 of	 binary	 classification
(shown	in	Figure	22),	 the	cut-off	line	to	classify	data	points	is	0.5.	Data	points
that	record	a	value	above	0.5	are	classified	as	Class	A,	and	data	points	below	0.5
are	 classified	 as	 Class	 B.	Data	 points	 that	 record	 a	 result	 of	 precisely	 0.5	 are
unclassifiable	but	such	instances	are	rare	due	to	the	mathematical	component	of
the	sigmoid	function.
Following	the	logistic	transformation	using	the	Sigmoid	function,	the	data	points
are	assigned	to	one	of	two	classes	as	presented	in	Figure	23.

Figure	23:	An	example	of	logistic	regression

Similar	 to	 linear	 regression.	 the	 independent	variables,	used	as	 input	 to	predict
the	 dependent	 variable,	 can	 be	 categorical	 or	 continuous	 as	 long	 as	 they	 are
expressed	 as	 numbers	 and	 not	 as	 strings	 of	 letters.	 In	 the	 case	 of	 discrete
categorical	variables,	this	involves	using	one-hot	encoding	to	create	a	new	set	of
variables	to	represent	the	original	variable	numerically.
Although	logistic	regression	shares	a	visual	resemblance	to	linear	regression,	the
logistic	 hyperplane	 represents	 a	 classification/decision	 boundary	 rather	 than	 a
prediction	 trendline.	 Thus,	 instead	 of	 using	 the	 hyperplane	 to	 make	 numeric
predictions,	the	hyperplane	is	used	to	divide	the	dataset	into	classes.
The	other	distinction	between	logistic	and	linear	regression	is	that	the	dependent
variable	 (y)	 isn’t	 placed	 along	 the	 y-axis	 in	 logistic	 regression.	 Instead,
independent	variables	can	be	plotted	along	both	axes,	and	 the	class	 (output)	of
the	dependent	variable	is	determined	by	the	position	of	the	data	point	in	relation
to	the	decision	boundary.	Data	points	on	one	side	of	the	decision	boundary	are
classified	 as	 Class	 A,	 and	 data	 points	 on	 the	 opposing	 side	 of	 the	 decision
boundary	are	Class	B.
For	 classification	 scenarios	 with	 more	 than	 two	 possible	 discrete	 outcomes,
multinomial	logistic	regression	can	be	used	as	shown	in	Figure	24.

Figure	24:	An	example	of	multinomial	logistic	regression

As	 a	 similar	 classification	 method,	 multinomial	 logistic	 regression	 solves
multiclass	 problems	 with	 more	 than	 two	 possible	 discrete	 outcomes.
Multinomial	logistic	regression	can	also	be	applied	to	ordinal	cases	where	there
are	 a	 set	 number	 of	 discrete	 outcomes,	 e.g.,	 pre-undergraduate,	 undergraduate,
and	postgraduate.	Keep	in	mind,	though,	that	logistic	regression’s	core	strength
lies	 in	binary	prediction,	 and	other	 classification	algorithms	 including	decision
trees	or	 support	vector	machines	may	be	a	better	option	 for	 solving	multiclass
problems.
Two	tips	to	remember	when	using	logistic	regression	are	that	the	dataset	should
be	free	of	missing	values	and	that	all	independent	variables	are	independent	and
not	strongly	correlated	with	each	other.	There	should	also	be	sufficient	data	for
each	 output	 variable	 to	 ensure	 high	 accuracy.	A	 good	 starting	 point	would	 be
approximately	30-50	data	points	for	each	output,	i.e.,	60-100	total	data	points	for
binary	logistic	regression.	In	general,	logistic	regression	normally	doesn’t	work
so	 well	 with	 large	 datasets,	 and	 especially	 messy	 data	 containing	 outliers,
complex	relationships,	and	missing	values.
If	 you	would	 like	 to	 learn	more	 about	 the	mathematical	 foundation	 of	 logistic
regression,	 you	 can	 check	 out	 Statistics	 101:	 Logistic	 Regression	 series	 on
YouTube	by	Brandon	Foltz.	[18]

CHAPTER	QUIZ

Using	logistic	regression	,	your	task	is	to	classify	penguins	into	different	classes
based	on	the	following	dataset.	Please	note	that	this	dataset	has	244	rows	and	the
following	screenshot	is	a	snippet	of	the	full	dataset.

1)	 	 	 	 	Which	 three	 variables	 (in	 their	 current	 form)	 could	 we	 use	 as	 the
dependent	variable	to	classify	penguins?

2)						Which	row(s)	contains	missing	values?

3)					Which	variable	in	the	dataset	preview	is	binary?

ANSWERS
1)						species,	island,	or	sex

2)						Row	3,	8,	and	9
(NaN	=	missing	value)

3)						sex
(Species	and	island	might	also	be	binary	but	we	can’t	judge	from	the	screenshot
alone.)

9

k	-NEAREST	NEIGHBORS
Another	 popular	 classification	 technique	 in	 machine	 learning	 is	 k	 -nearest
neighbors	 (k	 -NN).	 As	 a	 supervised	 learning	 algorithm,	 k	 -NN	 classifies	 new
data	points	based	on	their	position	to	nearby	data	points.
In	 many	 ways,	 k	 -NN	 is	 similar	 to	 a	 voting	 system	 or	 a	 popularity	 contest.
Imagine	 you’re	 the	 new	 kid	 at	 school	 and	 you	 need	 to	 know	 how	 to	 dress	 in
order	to	fit	in	with	the	rest	of	the	class.	On	your	first	day	at	school,	you	see	six	of
the	 nine	 students	 sitting	 closest	 to	 you	with	 their	 sleeves	 rolled-up.	 Based	 on
numerical	supremacy	and	close	proximity,	the	following	day	you	also	make	the
decision	to	roll	up	your	sleeves.
Let’s	now	look	at	another	example.

Figure	25:	An	example	of	k-	NN	clustering	used	to	predict	the	class	of	a	new	data	point

Here	 in	Figure	25,	 the	data	points	have	been	classified	 into	 two	classes,	 and	a
new	data	point,	whose	class	is	unknown,	is	added	to	the	plot.	Using	k	-NN,	we

can	 predict	 the	 category	 of	 the	 new	 data	 point	 based	 on	 its	 position	 to	 the
existing	data	points.
First,	though,	we	need	to	set	“k	”	to	determine	how	many	data	points	we	want	to
use	to	classify	the	new	data	point.	If	we	set	k	to	3,	k	-NN	analyzes	the	new	data
point’s	 position	 in	 respect	 to	 the	 three	 nearest	 data	 points	 (neighbors).	 The
outcome	of	selecting	the	three	closest	neighbors	returns	two	Class	B	data	points
and	 one	 Class	 A	 data	 point.	 Defined	 by	 k	 (3),	 the	 model’s	 prediction	 for
determining	the	category	of	the	new	data	point	is	Class	B	as	it	returns	two	out	of
the	three	nearest	neighbors.
The	 chosen	 number	 of	 neighbors	 identified,	 defined	 by	 k	 ,	 is	 crucial	 in
determining	 the	 results.	 In	 Figure	 25,	 you	 can	 see	 that	 the	 outcome	 of
classification	changes	by	altering	k	from	“3”	to	“7.”	It’s	therefore	useful	to	test
numerous	k	combinations	to	find	the	best	fit	and	avoid	setting	k	too	 low	or	 too
high.	Setting	k	too	low	will	increase	bias	and	lead	to	misclassification	and	setting
k	 too	 high	 will	 make	 it	 computationally	 expensive.	 Setting	 k	 to	 an	 uneven
number	will	also	help	to	eliminate	the	possibility	of	a	statistical	stalemate	and	an
invalid	 result.	Five	 is	 the	default	number	of	neighbors	 for	 this	algorithm	using
Scikit-learn.
Given	that	the	scale	of	the	individual	variables	has	a	major	impact	on	the	output
of	 k	 -NN,	 the	 dataset	 usually	 needs	 to	 be	 scaled	 to	 standardize	 variance	 as
discussed	 in	 Chapter	 5.	 This	 transformation	 will	 help	 to	 avoid	 one	 or	 more
variables	with	a	high	range	unfairly	pulling	the	focus	of	the	k	-NN	model.
In	regards	to	what	type	of	data	to	use	with	k	-NN,	this	algorithm	works	best	with
continuous	 variables.	 It	 is	 still	 possible	 to	 use	 binary	 categorical	 variables
represented	 as	 0	 and	 1,	 but	 the	 results	 are	more	 likely	 to	 be	 informed	 by	 the
binary	 splits	 relative	 to	 the	 dispersion	 across	 other	 variables	 as	 visualized	 in
Figure	26.

Figure	26:	One	binary	variable	and	two	continuous	variables

Above,	we	can	see	that	the	horizontal	x-axis	is	binary	(0	or	1),	which	splits	the
data	 into	 two	 distinct	 sides.	 Moreover,	 if	 we	 switch	 one	 of	 the	 existing
continuous	variables	 to	 a	 binary	 variable	 (as	 shown	 in	Figure	 27),	we	 can	 see
that	 the	 distance	 between	 variables	 is	 influenced	 even	 more	 greatly	 by	 the
outcome	of	the	binary	variables.
If	 you	do	wish	 to	 examine	binary	 variables,	 it’s	 therefore	 best	 to	 only	 include
critical	binary	variables	for	k	-NN	analysis.

Figure	27:	Two	binary	variable	and	one	continuous	variable

While	 k	 -NN	 is	 generally	 accurate	 and	 easy	 to	 comprehend,	 storing	 an	 entire
dataset	and	calculating	the	distance	between	each	new	data	point	and	all	existing
data	 points	 puts	 a	 heavy	 burden	 on	 computing	 resources.	 This	means	 that	 the
number	of	data	points	in	the	dataset	is	proportional	to	the	time	it	takes	to	execute
a	single	prediction,	which	can	lead	to	slower	processing	times.	For	this	reason,	k
-NN	is	generally	not	recommended	for	analyzing	large	datasets.
Another	 downside	 is	 that	 it	 can	 be	 challenging	 to	 apply	 k	 -NN	 to	 high-
dimensional	data	with	a	high	number	of	features.	Measuring	multiple	distances
between	 data	 points	 in	 a	 high-dimensional	 space	 is	 also	 taxing	 on	 computing
resources	and	it	becomes	more	difficult	to	perform	accurate	classification.

CHAPTER	QUIZ
Your	 task	 is	 to	 classify	 penguins	 into	 different	 species	 using	 the	 k	 -nearest
neighbors	algorithm,	with	k	set	to	3	(neighbors).	Please	note	that	this	dataset	has
244	rows	and	the	following	is	a	preview	of	the	full	dataset.

1)					Which	of	the	following	variables	should	we	consider	removing	from	our
k-NN	model?
A.	sex
B.	species
C.	body_mass_g
D.	bill_depth_mm

2)	 	 	 		If	we	wanted	to	reduce	the	processing	time	of	our	model,	which	of	the
following	methods	is	recommended?
A.						Increase	k	from	5	to	10
B.							Reduce	k	from	10	to	5
C.							Re-run	the	model	and	hope	for	a	faster	result
D.					Increase	the	size	of	the	training	data

3)	 	 	 	 	To	 include	 the	 variable	 ‘sex’	 in	 our	 model,	 which	 data	 scrubbing
technique	do	we	need	to	use?

ANSWERS
1)						A,	sex
(Binary	variables	should	only	be	used	when	critical	to	the	model’s	accuracy.)

2)					B,	Reduce	k	from	10	to	5

3)					One-hot	encoding	(to	convert	the	variable	into	a	numerical	identifier	of	0	or
1)

10

k	-MEANS	CLUSTERING
The	 next	 method	 of	 analysis	 involves	 grouping	 or	 clustering	 data	 points	 that
share	 similar	 attributes	 using	 unsupervised	 learning.	 An	 online	 business,	 for
example,	wants	 to	 examine	 a	 segment	 of	 customers	 that	 purchase	 at	 the	 same
time	of	the	year	and	discern	what	factors	influence	their	purchasing	behavior.	By
understanding	 a	 given	 cluster	 of	 customers,	 they	 can	 then	 form	 decisions
regarding	which	products	 to	 recommend	 to	 customer	 groups	 using	promotions
and	 personalized	 offers.	 Outside	 of	 market	 research,	 clustering	 can	 also	 be
applied	 to	 other	 scenarios,	 including	 pattern	 recognition,	 fraud	 detection,
and	image	processing.
One	 of	 the	 most	 popular	 clustering	 techniques	 is	 k	 -means	 clustering.	 As	 an
unsupervised	learning	algorithm,	k	-means	clustering	attempts	to	divide	data	into
k	number	of	discrete	groups	and	is	highly	effective	at	uncovering	new	patterns.
Examples	of	potential	groupings	include	animal	species,	customers	with	similar
features,	and	housing	market	segmentation.

Figure	28:	Comparison	of	original	data	and	clustered	data	using	k-	means

The	k	-means	clustering	algorithm	works	by	first	splitting	data	into	k	number	of

clusters,	with	k	 representing	 the	 number	 of	 clusters	 you	wish	 to	 create.	 If	 you
choose	to	split	your	dataset	into	three	clusters,	for	example,	then	k	should	be	set
to	3.	 In	Figure	28,	we	can	see	 that	 the	original	data	has	been	 transformed	 into
three	clusters	 (k	=	3).	 If	we	were	 to	 set	k	 to	 4,	 an	 additional	 cluster	would	 be
derived	from	the	dataset	to	produce	four	clusters.
How	 does	 k	 -means	 clustering	 separate	 the	 data	 points?	 The	 first	 step	 is	 to
examine	 the	 unclustered	 data	 and	manually	 select	 a	 centroid	 for	 each	 cluster.
That	centroid	then	forms	the	epicenter	of	an	individual	cluster.
Centroids	 can	 be	 chosen	 at	 random,	which	means	 you	 can	 nominate	 any	 data
point	 on	 the	 scatterplot	 to	 act	 as	 a	 centroid.	 However,	 you	 can	 save	 time	 by
selecting	 centroids	dispersed	across	 the	 scatterplot	 and	not	directly	 adjacent	 to
each	other.	 In	other	words,	start	by	guessing	where	you	 think	 the	centroids	 for
each	 cluster	might	 be	 positioned.	The	 remaining	 data	 points	 on	 the	 scatterplot
are	then	assigned	to	the	nearest	centroid	by	measuring	the	Euclidean	distance.

Figure	29:	Calculating	Euclidean	distance

Each	data	point	can	be	assigned	to	only	one	cluster,	and	each	cluster	is	discrete.
This	means	 that	 there’s	 no	 overlap	 between	 clusters	 and	 no	 case	 of	 nesting	 a
cluster	 inside	 another	 cluster.	 Also,	 all	 data	 points,	 including	 anomalies,	 are
assigned	 to	 a	 centroid	 irrespective	 of	 how	 they	 impact	 the	 final	 shape	 of	 the
cluster.	However,	 due	 to	 the	 statistical	 force	 that	 pulls	 nearby	 data	 points	 to	 a
central	point,	clusters	will	typically	form	an	elliptical	or	spherical	shape.
After	 all	 data	 points	 have	 been	 allocated	 to	 a	 centroid,	 the	 next	 step	 is	 to
aggregate	the	mean	value	of	the	data	points	in	each	cluster,	which	can	be	found
by	calculating	 the	average	x	and	y	values	of	 the	data	points	 contained	 in	each
cluster.
Next,	take	the	mean	value	of	the	data	points	in	each	cluster	and	plug	in	those	x
and	y	values	to	update	your	centroid	coordinates.	This	will	most	likely	result	in
one	 or	more	 changes	 to	 the	 location	 of	 your	 centroid(s).	 The	 total	 number	 of
clusters,	 however,	 remains	 the	 same	 as	 you	 are	 not	 creating	 new	 clusters	 but
rather	 updating	 their	 position	 on	 the	 scatterplot.	 Like	 musical	 chairs,	 the

remaining	data	points	rush	to	the	closest	centroid	to	form	k	number	of	clusters.
Should	 any	 data	 point	 on	 the	 scatterplot	 switch	 clusters	 with	 the	 changing	 of
centroids,	 the	 previous	 step	 is	 repeated.	 This	 means,	 again,	 calculating	 the
average	 mean	 value	 of	 the	 cluster	 and	 updating	 the	 x	 and	 y	 values	 of	 each
centroid	to	reflect	the	average	coordinates	of	the	data	points	in	that	cluster.
Once	you	reach	a	stage	where	the	data	points	no	longer	switch	clusters	after	an
update	 in	 centroid	 coordinates,	 the	 algorithm	 is	 complete,	 and	 you	 have	 your
final	set	of	clusters.
The	following	diagrams	break	down	the	full	algorithmic	process.

Figure	30:	Sample	data	points	are	plotted	on	a	scatterplot

Figure	31:	Two	existing	data	points	are	nominated	as	the	centroids

Figure	32:	Two	clusters	are	formed	after	calculating	the	Euclidean	distance	of	the	remaining	data	points	to
the	centroids.

Figure	33:	The	centroid	coordinates	for	each	cluster	are	updated	to	reflect	the	cluster’s	mean	value.	The	two
previous	centroids	stay	in	their	original	position	and	two	new	centroids	are	added	to	the	scatterplot	. 	Lastly,
as	one	data	point	has	switched	from	the	right	cluster	to	the	left	cluster,	the	centroids	of	both	clusters	need	to
be	updated	one	last	time.

Figure	34:	Two	final	clusters	are	produced	based	on	the	updated	centroids	for	each	cluster

For	 this	example,	 it	 took	 two	 iterations	 to	successfully	create	our	 two	clusters.
However,	 k	 -means	 clustering	 is	 not	 always	 able	 to	 reliably	 identify	 a	 final
combination	of	clusters.	In	such	cases,	you	will	need	to	switch	tactics	and	utilize

another	algorithm	to	formulate	your	classification	model.
Also,	 be	 aware	 that	 you	 may	 need	 to	 rescale	 the	 input	 features	 using
standardization	before	running	the	k	-means	algorithm.	This	will	help	to	preserve
the	true	shape	of	the	clusters	and	avoid	exaggerated	variance	from	affecting	the
final	output	(i.e.	over-stretched	clusters).

Setting	k
When	setting	“k”	for	k	-means	clustering,	it’s	important	to	find	the	right	number
of	clusters.	In	general,	as	k	increases,	clusters	become	smaller	and	variance	falls.
However,	 the	 downside	 is	 that	 neighboring	 clusters	 become	 less	 distinct	 from
one	another	as	k	increases.	If	you	set	k	to	the	same	number	of	data	points	in	your
dataset,	each	data	point	automatically	becomes	a	standalone	cluster.	Conversely,
if	 you	 set	 k	 to	 1,	 then	 all	 data	 points	will	 be	 deemed	 as	 homogenous	 and	 fall
inside	 one	 large	 cluster.	 Needless	 to	 say,	 setting	 k	 to	 either	 extreme	 does	 not
provide	any	worthwhile	insight.
In	order	to	optimize	k	 ,	you	may	wish	to	use	a	scree	plot	for	guidance.	A	scree
plot	charts	the	degree	of	scattering	(variance)	inside	a	cluster	as	the	total	number
of	 clusters	 increase.	 Scree	 plots	 are	 famous	 for	 their	 iconic	 “elbow,”	 which
reflects	several	pronounced	kinks	in	the	plot’s	curve.	A	scree	plot	compares	the
Sum	of	Squared	Error	(SSE)	for	each	variation	of	total	clusters.	SSE	is	measured
as	the	sum	of	the	squared	distance	between	the	centroid	and	the	other	neighbors
inside	the	cluster.	In	a	nutshell,	SSE	drops	as	more	clusters	are	produced.

Figure	35:	A	scree	plot

This	begs	the	question	of	what’s	an	optimal	number	of	clusters?	In	general,	you
should	opt	for	a	cluster	solution	where	SSE	subsides	dramatically	to	the	left	on
the	 scree	 plot	 but	 before	 it	 reaches	 a	 point	 of	 negligible	 change	 with	 cluster
variations	to	its	right.	For	instance,	in	Figure	35,	there	is	little	change	in	SSE	for
four	 or	 more	 clusters.	 This	 would	 result	 in	 clusters	 that	 would	 be	 small	 and
difficult	to	distinguish.
In	 this	 scree	 plot,	 two	 or	 three	 clusters	 appear	 to	 be	 an	 ideal	 solution.	 There
exists	 a	 significant	 kink	 to	 the	 left	 of	 these	 two	 cluster	 variations	 due	 to	 a
pronounced	drop-off	in	SSE.	Meanwhile,	there	is	still	some	change	in	SSE	with
the	 solution	 to	 their	 right.	This	will	 ensure	 that	 these	 two	cluster	 solutions	 are
distinct	and	have	an	impact	on	data	classification.
Another	useful	technique	to	decide	the	number	of	cluster	solutions	is	to	divide
the	total	number	of	data	points	(n)	by	two	and	finding	the	square	root.

If	we	have	200	data	points,	for	example,	the	recommended	number	of	clusters	is
10,	whereas	if	we	have	18	data	points,	the	suggested	number	of	clusters	is	3.
A	more	simple	and	non-mathematical	approach	 to	setting	k	 is	 to	apply	domain
knowledge.	I	might	want	to	set	k	to	2,	for	example,	if	I	am	analyzing	data	about
visitors	 to	 the	 website	 of	 a	 major	 IT	 provider.	 Why	 two	 clusters?	 Because	 I
already	 know	 there	 is	 a	 significant	 discrepancy	 in	 spending	 behavior	 between
returning	visitors	and	new	visitors.	First-time	visitors	rarely	purchase	enterprise-
level	IT	products	and	services,	as	these	customers	usually	go	through	a	lengthy
research	and	vetting	process	before	procurement	can	be	approved.
Based	on	 this	 knowledge,	 I	 can	 use	k	 -means	 clustering	 to	 create	 two	 clusters
and	 test	 my	 hypothesis.	 After	 producing	 two	 clusters,	 I	 may	 then	 choose	 to
examine	one	of	the	two	clusters	further,	by	either	applying	another	technique	or
again	using	k-	means	clustering.	For	instance,	I	might	want	to	split	the	returning
users	 into	 two	 clusters	 (using	 k-	means	 clustering)	 to	 test	 my	 hypothesis	 that
mobile	 users	 and	 desktop	 users	 produce	 two	 disparate	 groups	 of	 data	 points.
Again,	 by	 applying	 domain	 knowledge,	 I	 know	 it’s	 uncommon	 for	 large

enterprises	 to	make	big-ticket	purchases	on	a	mobile	device	and	I	can	 test	 this
assumption	using	k	-means	clustering.
If,	 though,	 I	am	analyzing	a	product	page	for	a	 low-cost	 item,	such	as	a	$4.99
domain	name,	new	visitors	and	returning	visitors	are	less	likely	to	produce	two
distinct	clusters.	As	the	item	price	is	low,	new	users	are	less	likely	to	deliberate
before	 purchasing.	 Instead,	 I	 might	 choose	 to	 set	 k	 to	 3	 based	 on	 my	 three
primary	lead	generators:	organic	traffic,	paid	traffic,	and	email	marketing.	These
three	lead	sources	are	likely	to	produce	three	discrete	clusters	based	on	the	fact
that:
a)					Organic	traffic	generally	consists	of	both	new	and	returning	customers	with

the	intention	to	purchase	from	my	website	(through	pre-selection,	e.g.,	word
of	mouth,	previous	customer	experience).

b)	 	 	 	 	Paid	traffic	targets	new	customers	who	 typically	arrive	on	 the	site	with	a
lower	 level	of	 trust	 than	organic	 traffic,	 including	potential	 customers	who
click	on	the	paid	advertisement	by	mistake.

c)						Email	marketing	reaches	existing	customers	who	already	have	experience
purchasing	from	the	website	and	have	established	and	verified	user	accounts.

This	 is	 an	 example	 of	 domain	 knowledge	 based	 on	 my	 occupation	 but
understand	 that	 the	 effectiveness	 of	 “domain	 knowledge”	 diminishes
dramatically	past	a	low	number	of	k	clusters.	In	other	words,	domain	knowledge
might	be	sufficient	for	determining	two	to	four	clusters	but	 less	valuable	when
choosing	between	a	higher	number	of	clusters,	such	as	20	or	21	clusters.

CHAPTER	QUIZ

Your	task	is	to	group	the	flights	dataset	(which	tracks	flights	from	1949	to	1960)
into	discrete	clusters	using	k	-means	clustering	.	The	full	dataset	has	145	rows.

1)	 	 	 	 	Using	k	 -means	clustering	to	analyze	all	3	variables,	what	might	be	a
good	initial	number	of	k	clusters	(using	only	domain/general	knowledge)
to	train	the	model?

A.	 k	=	2
B.	 k	=	100
C.	 k	=	12
D.	 k	=	3

2)	 	 	 	 	What	mathematical	 technique	might	we	 use	 to	 find	 the	 appropriate
number	of	clusters?

A.						Big	elbow	method
B.							Mean	absolute	error
C.							Scree	plot
D.						One-hot	encoding

3)						Which	variable	requires	data	scrubbing?

ANSWERS

1)						12
(Given	there	are	12	months	in	a	year,	there	may	be	some	reoccurring	patterns	in
regards	to	the	number	of	passengers	for	each	month.)
2)						C,	Scree	plot

3)						Month
(This	 variable	 needs	 to	 be	 converted	 into	 a	 numerical	 identifier	 in	 order	 to
measure	its	distance	to	other	variables.)

11

BIAS	&	VARIANCE
Algorithm	 selection	 is	 an	 essential	 step	 in	 understanding	 patterns	 in	 your	 data
but	designing	a	generalized	model	 that	accurately	predicts	new	data	points	can
be	 a	 challenging	 task.	 The	 fact	 that	 most	 algorithms	 have	 many	 different
hyperparameters	also	leads	to	a	vast	number	of	potential	outcomes.
As	a	quick	recap,	hyperparameters	are	 lines	of	code	 that	act	as	 the	algorithm’s
settings,	similar	to	the	controls	on	the	dashboard	of	an	airplane	or	knobs	used	to
tune	radio	frequency.

Figure	36:	Example	of	hyperparameters	in	Python	for	the	algorithm	gradient	boosting

A	 constant	 challenge	 in	 machine	 learning	 is	 navigating	 underfitting	 and
overfitting	 ,	which	describe	how	closely	your	model	follows	the	actual	patterns
of	 the	 data.	 To	 comprehend	 underfitting	 and	 overfitting,	 you	 must	 first
understand	bias	and	variance	.
Bias	refers	to	the	gap	between	the	value	predicted	by	your	model	and	the	actual
value	 of	 the	 data.	 In	 the	 case	 of	 high	 bias,	 your	 predictions	 are	 likely	 to	 be
skewed	 in	 a	particular	direction	away	 from	 the	 true	values.	Variance	describes
how	 scattered	 your	 predicted	 values	 are	 in	 relation	 to	 each	 other.	 Bias	 and
variance	 can	 be	 better	 understood	 by	 viewing	 the	 following	 visual
representation.

Figure	37:	Shooting	targets	used	to	represent	bias	and	variance

Shooting	targets,	as	seen	in	Figure	37,	are	not	a	visualization	technique	used	in
machine	learning	but	can	be	used	here	to	explain	bias	and	variance.	[19]
Imagine	 that	 the	 center	 of	 the	 target,	 or	 the	 bull’s-eye,	 perfectly	 predicts	 the
correct	value	of	your	data.	The	dots	marked	on	the	target	represent	an	individual
prediction	of	your	model	based	on	the	training	or	 test	data	provided.	In	certain
cases,	 the	dots	will	be	densely	positioned	close	 to	 the	bull’s-eye,	 ensuring	 that
predictions	made	by	the	model	are	close	to	the	actual	values	and	patterns	found
in	the	data.	In	other	cases,	the	model’s	predictions	will	lie	more	scattered	across
the	 target.	The	more	 the	predictions	deviate	 from	the	bull’s-eye,	 the	higher	 the
bias	and	the	less	reliable	your	model	is	at	making	accurate	predictions.
In	the	first	target,	we	can	see	an	example	of	low	bias	and	low	variance.	The	bias
is	low	because	the	model’s	predictions	are	closely	aligned	to	the	center,	and	there
is	 low	 variance	 because	 the	 predictions	 are	 positioned	 densely	 in	 one	 general
location.
The	second	target	(located	on	the	right	of	the	first	row)	shows	a	case	of	low	bias
and	high	variance.	Although	the	predictions	are	not	as	close	to	the	bull’s-eye	as

the	previous	example,	 they	are	still	near	 to	 the	center,	and	the	bias	 is	 therefore
relatively	 low.	 However,	 there	 is	 a	 high	 variance	 this	 time	 because	 the
predictions	are	spread	out	from	each	other.
The	third	target	(located	on	the	left	of	the	second	row)	represents	high	bias	and
low	variance	and	the	fourth	target	(located	on	the	right	of	the	second	row)	shows
high	bias	and	high	variance.
Ideally,	 you	want	 a	 situation	where	 there’s	both	 low	variance	 and	 low	bias.	 In
reality,	however,	 there’s	a	trade-off	between	optimal	bias	and	optimal	variance.
Bias	and	variance	both	contribute	 to	error	but	 it’s	 the	prediction	error	 that	you
want	to	minimize,	not	the	bias	or	variance	specifically.
Like	 learning	 to	 ride	a	bicycle	 for	 the	 first	 time,	 finding	an	optimal	balance	 is
one	 of	 the	more	 challenging	 aspects	 of	machine	 learning.	 Peddling	 algorithms
through	 the	data	 is	 the	easy	part;	 the	hard	part	 is	navigating	bias	and	variance
while	maintaining	a	state	of	balance	in	your	model.

Figure	38:	Model	complexity	based	on	the	prediction	error

Let’s	explore	this	problem	further	using	a	visual	example.	In	Figure	38,	we	can
see	 two	 curves.	 The	 upper	 curve	 represents	 the	 test	 data,	 and	 the	 lower	 curve
depicts	 the	 training	 data.	 From	 the	 left,	 both	 curves	 begin	 at	 a	 point	 of	 high
prediction	 error	 due	 to	 low	 variance	 and	 high	 bias.	 As	 they	move	 toward	 the
right,	they	change	to	the	opposite:	high	variance	and	low	bias.	This	leads	to	low
prediction	error	in	the	case	of	the	training	data	and	high	prediction	error	in	the

case	of	the	test	data.	In	the	middle	of	the	plot	is	an	optimal	balance	of	prediction
error	between	the	training	and	test	data.	This	midground	is	a	typical	illustration
of	the	bias-variance	trade-off.

Figure	39:	Underfitting	on	the	left	and	overfitting	on	the	right

Mismanaging	 the	 bias-variance	 trade-off	 can	 lead	 to	 poor	 results.	 As	 seen	 in
Figure	 39,	 this	 can	 result	 in	 the	 model	 being	 overly	 simple	 and	 inflexible
(underfitting)	or	overly	complex	and	flexible	(overfitting).
Underfitting	(low	variance,	high	bias)	on	the	left	and	overfitting	(high	variance,
low	bias)	on	the	right	are	shown	in	these	two	scatterplots.	A	natural	temptation	is
to	add	complexity	to	the	model	(as	shown	on	the	right)	to	improve	accuracy,	but
this	 can,	 in	 turn,	 lead	 to	 overfitting.	 An	 overfitted	 model	 yields	 accurate
predictions	using	the	training	data	but	is	less	precise	at	making	predictions	using
the	 test	 data.	 Overfitting	 can	 also	 occur	 if	 the	 training	 and	 test	 data	 aren’t
randomized	before	they	are	split	and	patterns	in	the	data	aren’t	distributed	evenly
across	the	two	segments	of	data.
Underfitting	is	when	your	model	is	overly	simple,	and	again,	has	not	scratched
the	 surface	 of	 the	 underlying	 patterns	 in	 the	 data.	 This	 can	 lead	 to	 inaccurate
predictions	 for	 both	 the	 training	 data	 and	 test	 data.	 Common	 causes	 of
underfitting	 include	 insufficient	 training	 data	 to	 adequately	 cover	 all	 possible
combinations,	 and	 situations	where	 the	 training	 and	 test	 data	weren’t	 properly
randomized.
To	mitigate	 underfitting	 and	 overfitting,	 you	may	 need	 to	modify	 the	model’s
hyperparameters	to	ensure	that	they	fit	the	patterns	of	both	the	training	and	test
data	 and	 not	 just	 one	 split	 of	 the	 data.	 A	 suitable	 fit	 should	 acknowledge
significant	trends	in	the	data	and	play	down	or	even	omit	minor	variations.	This
might	mean	re-randomizing	your	training	and	test	data,	adding	new	data	points

to	better	detect	underlying	patterns	or	switching	algorithms	to	manage	the	issue
of	 the	 bias-variance	 trade-off.	 Linear	 regression,	 for	 example,	 is	 one	 learning
algorithm	 that	 rarely	 encounters	 overfitting	 (but	 may	 be	 susceptible	 to
underfitting).
Switching	from	linear	regression	to	non-linear	regression	can	also	reduce	bias	by
increasing	variance.	Alternatively,	increasing	“k	”	in	k	-NN	minimizes	variance
(by	 averaging	 together	 more	 neighbors).	 A	 third	 example	 could	 be	 reducing
variance	by	switching	from	a	single	decision	tree	(which	is	prone	to	overfitting)
to	random	forests	with	many	decision	trees.
An	advanced	strategy	to	combat	overfitting	is	to	introduce	regularization	,	which
reduces	 the	risk	of	overfitting	by	constraining	the	model	 to	make	it	simpler.	In
effect,	this	add-on	hyperparameter	artificially	amplifies	bias	error	by	penalizing
an	 increase	 in	a	model’s	complexity	and	provides	a	warning	alert	 to	keep	high
variance	in	check	while	other	hyperparameters	are	being	tested	and	optimized.
Setting	 the	regularization	hyperparameter	 to	a	high	value	will	avoid	overfitting
the	 model	 to	 the	 training	 data	 but	 may	 lead	 to	 some	 underfitting.	 In	 linear
regression,	 this	 would	 constitute	 a	 relatively	 flat	 slope	 (close	 to	 zero)	 for	 the
hyperplane	or	an	overly	wide	margin	in	the	case	of	support	vector	machines.
Lastly,	 one	 other	 technique	 to	 improve	 model	 accuracy	 is	 to	 perform	 cross
validation,	 as	 covered	 earlier	 in	Chapter	6	 ,	 to	minimize	 pattern	 discrepancies
between	the	training	data	and	the	test	data.

12

SUPPORT	VECTOR	MACHINES
Developed	inside	the	computer	science	community	in	the	1990s,	support	vector
machines	 (SVM)	was	 initially	designed	 for	predicting	numeric	 and	 categorical
outcomes	as	a	double-barrel	prediction	technique.	Today,	though,	SVM	is	mostly
used	as	a	classification	technique	for	predicting	categorical	outcomes.
As	a	classification	 technique,	SVM	is	 similar	 to	 logistic	 regression,	 in	 that	 it’s
used	 to	 filter	 data	 into	 a	 binary	 or	 multiclass	 target	 variable.	 But,	 as	 seen	 in
Figure	 40,	 SVM	 sets	 a	 different	 emphasis	 on	 the	 location	 of	 the	 classification
boundary	line.

Figure	40:	Logistic	regression	versus	SVM

The	scatterplot	in	Figure	40	consists	of	17	data	points	that	are	linearly	separable.
We	can	see	that	the	logistic	decision	boundary	(A)	splits	the	data	points	into	two

classes	 in	 a	 way	 that	 minimizes	 the	 distance	 between	 all	 data	 points	 and	 the
decision	boundary.	The	second	 line,	 the	SVM	boundary	(B),	also	separates	 the
two	classes	but	 it	does	so	from	a	position	of	maximum	distance	between	 itself
and	the	two	classes	of	data	points.
You’ll	 also	 notice	 a	 gray	 zone	 that	 denotes	 margin	 ,	 which	 is	 the	 distance
between	 the	 decision	 boundary	 and	 the	 nearest	 data	 point,	 multiplied	 by	 two.
The	margin	 is	a	key	part	of	SVM	and	 is	 important	because	 it	offers	additional
support	to	cope	with	new	data	points	that	may	infringe	on	the	decision	boundary
(as	is	the	case	with	logistic	regression).	To	illustrate	this	scenario,	let’s	consider
the	same	scatterplot	with	the	inclusion	of	a	new	data	point.

Figure	41:	A	new	data	point	is	added	to	the	scatterplot

The	new	data	point	is	a	circle,	but	it’s	located	incorrectly	on	the	left	side	of	the
logistic	 (A)	 decision	 boundary	 (designated	 for	 stars).	 The	 new	 data	 point,
though,	 remains	 correctly	 located	 on	 the	 right	 side	 of	 the	 SVM	 (B)	 decision
boundary	 (designated	 for	 circles)	 courtesy	 of	 ample	 “support”	 supplied	 by	 the
margin.

Figure	42:	Mitigating	anomalies

SVM	is	also	useful	for	untangling	complex	relationships	and	mitigating	outliers
and	anomalies.	A	limitation	of	standard	logistic	regression	is	that	it	goes	out	of
its	way	to	fit	outliers	and	anomalies	(as	seen	in	the	scatterplot	with	the	star	in	the
bottom	right	corner	in	Figure	42).	SVM,	however,	is	less	sensitive	to	such	data
points	and	actually	minimizes	their	impact	on	the	final	location	of	the	boundary
line.	 In	 Figure	 42,	 we	 can	 see	 that	 Line	 B	 (SVM)	 is	 less	 sensitive	 to	 the
anomalous	star	on	 the	 right-hand	side.	SVM	can	 thus	be	used	as	a	method	 for
managing	variant	data.
The	 SVM	boundary	 can	 also	 be	modified	 to	 ignore	misclassified	 cases	 in	 the
training	data	using	a	hyperparameter	called	C.	In	machine	learning,	you	typically
want	to	generalize	patterns	rather	than	precisely	decode	the	training	data	(which
is	 bound	 to	 contain	 some	 degree	 of	 noise	 [20])	 as	 incurring	 some	mistakes	 in
training	the	model	may	lead	to	a	model	that	generalizes	better	on	real	data.	There
is	 therefore	a	 trade-off	 in	SVM	between	a	wide	margin/more	mistakes	and	 a
narrow	margin/fewer	mistakes	 .	The	higher	goal	of	your	model	 is	 to	strike	a
balance	between	 "not	 too	 strict"	 and	 "not	 too	 loose",	 and,	by	modifying	 the	C
hyperparameter,	you	can	regulate	to	what	extent	the	misclassified	cases	(on	the
wrong	side	of	the	margin)	are	ignored.
Adding	 flexibility	 to	 the	model	 using	 the	 hyperparameter	C	 introduces	what’s
called	 a	 “soft	margin,”	which	 ignores	 a	 determined	portion	of	 cases	 that	 cross

over	the	soft	margin—leading	to	greater	generalization	in	the	model.	The	margin
is	 made	 wider	 or	 soft	 when	 C	 is	 to	 set	 to	 a	 low	 value.	 A	 C	 value	 of	 ‘0,’
meanwhile,	 enforces	 no	 penalty	 on	misclassified	 cases.	 Conversely,	 a	 large	 C
value	[21]	makes	 the	cost	of	misclassification	high,	 thereby	narrowing	 the	width
of	the	margin	(hard	margin)	to	avoid	misclassification.	This	may	force	the	model
to	overfit	the	training	data	and	thereby	misclassify	new	data	points.
You	can	combat	overfitting—where	the	model	performs	well	on	the	training	data
but	 not	 on	 new	data—by	 reducing	C	 as	 this	 adds	 regularization	 to	 the	model.
Finding	an	optimal	C	value	is	generally	chosen	experimentally	based	on	trial	and
error,	which	can	be	automated	using	a	technique	called	grid	search	(discussed	in
Chapter	18).

Figure	43:	Soft	margin	versus	hard	margin

While	 the	examples	discussed	so	 far	have	comprised	 two	features	plotted	on	a
two-dimensional	 scatterplot,	 SVM’s	 real	 strength	 lies	 with	 high-dimensional
data	 and	 handling	 multiple	 features.	 SVM	 has	 numerous	 advanced	 variations
available	to	classify	high-dimensional	data	using	what’s	called	the	Kernel	Trick.
This	 is	 an	 advanced	 solution	 to	 map	 data	 from	 a	 low-dimensional	 to	 a	 high-
dimensional	 space	when	 a	 dataset	 cannot	 be	 separated	 using	 a	 linear	 decision
boundary	in	its	original	space.	Transitioning	from	a	two-dimensional	to	a	three-
dimensional	space,	for	example,	allows	us	to	use	a	linear	plane	to	split	the	data
within	 a	 3-D	 area.	 In	 other	words,	 the	 kernel	 trick	 lets	 us	 classify	 data	 points
with	non-linear	characteristics	using	linear	classification	in	a	higher	dimension.

Figure	44:	In	this	example,	the	decision	boundary	provides	a	non-linear	separator	between	the	data	in	a	2-D
space	but	transforms	into	a	linear	separator	between	data	points	when	projected	into	a	3-D	space

A	factor	to	be	mindful	of	when	using	SVM	is	that	it	can	be	sensitive	to	feature
scales	 and	 you	 may	 need	 to	 rescale	 the	 data	 prior	 to	 training.	 [22]	 Using
standardization,	you	can	convert	the	range	of	each	feature	to	a	standard	normal
distribution	with	a	mean	of	zero.	Standardization	is	implemented	in	Scikit-learn
using	 StandardScaler.	 Documentation	 for	 StandardScaler	 can	 be	 found	 at
http://bit.ly/378pf9Q	.
Lastly,	 the	 processing	 time	 to	 train	 a	model	 relative	 to	 logistic	 regression	 and
other	classification	algorithms	can	be	a	drawback	 to	using	SVM.	 In	particular,
SVM	 is	 not	 recommended	 for	 datasets	 with	 a	 low	 feature-to-row	 ratio	 (low
number	of	features	relative	to	rows)	due	 to	speed	and	performance	constraints.
SVM	 does,	 though,	 excel	 at	 untangling	 outliers	 from	 complex	 small	 and
medium-sized	datasets	and	managing	high-dimensional	data.

http://bit.ly/378pf9Q

CHAPTER	QUIZ

Using	an	SVM	classifier	 ,	 your	 task	 is	 to	 classify	which	 island	 a	penguin	has
come	from	after	arriving	on	your	own	island.	To	predict	the	island,	you	can	use
any	or	all	of	the	variables	from	the	penguin	dataset.

1)	 	 	 	 	Which	of	the	following	variables	would	be	the	dependent	variable	for
this	model?

2)					Which	of	the	following	variables	could	we	use	as	independent	variables?

3)	 	 	 	 	What	 are	 two	 data	 scrubbing	 techniques	 commonly	 used	 with	 this
algorithm?

ANSWERS
1)						island

2)	 	 	 		For	this	model,	all	variables	except	for	island	could	potentially	be	used
as	independent	variables.

(Penguins	 living	on	 islands	with	abundant	 food	 sources	and	 few	predators,
for	example,	may	have	a	more	balanced	ratio	of	male	and	female	penguins
and	 grow	 larger	 in	 size.	Of	 course,	 the	 only	way	 to	 find	 out	 is	 to	 test	 the
relationship	 between	 the	 island	 and	 individual	 variables	 using	 correlation
analysis	and	other	exploratory	data	analysis	techniques.)

3)						Regularization	and	standardization

13

ARTIFICIAL	NEURAL	NETWORKS
This	penultimate	chapter	on	machine	 learning	algorithms	brings	us	 to	artificial
neural	 networks	 (ANN)	 and	 the	 gateway	 to	 reinforcement	 learning.	 Artificial
neural	networks,	also	known	as	neural	networks	,	is	a	popular	machine	learning
technique	for	analyzing	data	through	a	network	of	decision	layers.	The	naming
of	 this	 technique	was	 inspired	by	 the	algorithm’s	 structural	 resemblance	 to	 the
human	 brain.	While	 this	 doesn’t	 mean	 artificial	 neural	 networks	 are	 a	 virtual
reproduction	 of	 the	 brain’s	 decision-making	 process,	 there	 does	 exist	 some
general	similarities.

Figure	45:	Anatomy	of	a	human	brain	neuron

The	 brain,	 for	 example,	 contains	 interconnected	 neurons	 with	 dendrites	 that
receive	inputs.	From	these	inputs,	the	neuron	produces	an	electric	signal	output
from	the	axon	and	emits	these	signals	through	axon	terminals	to	other	neurons.
Similarly,	artificial	neural	networks	consist	of	interconnected	decision	functions,
known	as	nodes,	which	interact	with	each	other	through	axon-like	edges	.
The	nodes	of	a	neural	network	are	separated	into	layers	and	generally	start	with	a
wide	base.	This	 first	 layer	 consists	 of	 raw	 input	 data	 (such	 as	 numeric	values,
text,	 image	 pixels	 or	 sound)	 divided	 into	 nodes.	 Each	 input	 node	 then	 sends
information	to	the	next	layer	of	nodes	via	the	network’s	edges.

Figure	46:	The	nodes,	edges/weights,	and	sum/activation	function	of	a	basic	neural	network

Each	 edge	 in	 the	 network	 has	 a	 numeric	 weight	 that	 can	 be	 altered	 based	 on
experience.	If	the	sum	of	the	connected	edges	satisfies	a	set	threshold,	known	as
the	activation	function	,	this	activates	a	neuron	at	the	next	layer.	If	the	sum	of	the
connected	 edges	 does	 not	meet	 the	 set	 threshold,	 the	 activation	 function	 fails,
which	results	in	an	all	or	nothing	arrangement.	Moreover,	 the	weights	assigned
to	each	edge	are	unique,	which	means	the	nodes	fire	differently,	preventing	them
from	producing	the	same	solution.
Using	 supervised	 learning,	 the	 model’s	 predicted	 output	 is	 compared	 to	 the
actual	output	(that’s	known	to	be	correct),	and	the	difference	between	these	two
results	is	measured	as	the	cost	or	cost	value	.	The	purpose	of	training	is	to	reduce
the	 cost	 value	 until	 the	model’s	 prediction	 closely	matches	 the	 correct	 output.
This	 is	 achieved	 by	 incrementally	 tweaking	 the	 network’s	 weights	 until	 the
lowest	 possible	 cost	 value	 is	 obtained.	 This	 particular	 process	 of	 training	 the
neural	 network	 is	 called	 back-propagation	 .	 Rather	 than	 navigate	 from	 left	 to
right	 like	 how	 data	 is	 fed	 into	 the	 network,	 back-propagation	 rolls	 in	 reverse
from	the	output	layer	on	the	right	to	the	input	layer	on	the	left.

The	Black-box	Dilemma
One	 of	 the	 downsides	 of	 a	 network-based	 model	 is	 the	 black-box
dilemma.	 Although	 the	 network	 can	 approximate	 accurate	 outputs,	 tracing	 its
decision	 structure	 reveals	 limited	 to	 no	 insight	 about	 how	 specific	 variables

influence	 its	 decision.	 For	 instance,	 if	we	 use	 a	 neural	 network	 to	 predict	 the
outcome	 of	 a	 Kickstarter	 campaign	 (an	 online	 funding	 platform	 for	 creative
projects),	 the	 network	 can	 analyze	 numerous	 independent	 variables	 including
campaign	 category,	 currency,	 deadline,	 and	 minimum	 pledge	 amount,	 etc.
However,	 the	model	 is	 unable	 to	 specify	 the	 relationship	 of	 these	 independent
variables	to	the	dependent	variable	of	the	campaign	reaching	its	funding	target.
Algorithms	 such	 as	 decision	 trees	 and	 linear	 regression,	 meanwhile,	 are
transparent	as	they	show	the	variables’	relationships	to	a	given	output.	Moreover,
it’s	 possible	 for	 two	 neural	 networks	with	 different	 topologies	 and	weights	 to
produce	 the	 same	 output,	 which	 makes	 it	 even	 more	 challenging	 to	 trace	 the
impact	of	specific	variables	on	the	final	output.
This	 begs	 the	 question	 of	when	 should	 you	use	 a	 neural	 network	 (given	 it’s	 a
black-box	 technique)?	 To	 answer	 this	 question,	 neural	 networks	 generally	 fit
prediction	tasks	with	a	large	number	of	input	features	and	complex	patterns,	and
especially	problems	 that	are	difficult	 for	computers	 to	decipher	but	 simple	and
almost	 trivial	 for	 humans.	 One	 example	 is	 the	 CAPTCHA	 (Completely
Automated	Public	Turing	test	 to	 tell	Computers	and	Humans	Apart)	challenge-
response	 test	 on	 websites	 to	 determine	 whether	 a	 user	 is	 human.	 Another
example	 is	 identifying	 if	 a	 pedestrian	 is	 preparing	 to	 step	 into	 the	 path	 of	 an
oncoming	vehicle.	In	both	examples,	obtaining	a	fast	and	accurate	prediction	is
more	important	than	decoding	the	specific	variables	and	their	relationship	to	the
final	output.

Building	a	Neural	Network
A	 typical	 neural	 network	 can	be	divided	 into	 input,	 hidden,	 and	output	 layers.
Data	is	first	received	by	the	input	layer,	where	features	are	detected.	The	hidden
layer(s)	then	analyze	and	process	the	input	features,	and	the	final	result	is	shown
as	the	output	layer.

Figure	47:	The	three	general	layers	of	a	neural	network

The	 middle	 layers	 are	 considered	 hidden	 because,	 like	 human	 vision,	 they
covertly	process	objects	between	the	 input	and	output	 layers.	When	faced	with
four	lines	connected	in	the	shape	of	a	square,	our	eyes	instantly	recognize	those
four	lines	as	a	square.	We	don’t	notice	the	mental	processing	that	is	involved	to
register	the	four	polylines	(input)	as	a	square	(output).
Neural	networks	work	in	a	similar	way	as	they	break	data	into	layers	and	process
the	hidden	layers	to	produce	a	final	output.	As	more	hidden	layers	are	added	to
the	 network,	 the	model’s	 capacity	 to	 analyze	 complex	 patterns	 also	 improves.
This	 is	why	models	with	a	deep	number	of	 layers	are	often	referred	to	as	deep
learning	[23]	to	distinguish	their	deeper	and	superior	processing	abilities.
While	there	are	many	techniques	to	assemble	the	nodes	of	a	neural	network,	the
simplest	 method	 is	 the	 feed-forward	 network	 where	 signals	 flow	 only	 in	 one
direction	 and	 there’s	 no	 loop	 in	 the	 network.	 The	most	 basic	 form	 of	 a	 feed-
forward	neural	network	 is	 the	perceptron	 ,	which	was	devised	 in	 the	1950s	by
Professor	Frank	Rosenblatt.

Figure	48:	Visual	representation	of	a	perceptron	neural	network

The	 perceptron	 was	 designed	 as	 a	 decision	 function	 for	 receiving	 inputs	 to
produce	a	binary	output.	Its	structure	consists	of	one	or	more	inputs,	a	processor,
and	a	single	output.	Inputs	are	fed	into	the	processor	(neuron),	processed,	and	an
output	is	then	generated.
A	perceptron	supports	one	of	two	potential	outputs,	“0”	or	“1.”	An	output	of	“1”
triggers	the	activation	function,	while	“0”	does	not.	When	working	with	a	larger
neural	network	with	additional	layers,	the	“1”	output	can	be	configured	to	pass
the	output	 to	 the	next	 layer.	Conversely,	“0”	is	configured	to	be	 ignored	and	is
not	passed	to	the	next	layer	for	processing.
As	 a	 supervised	 learning	 technique,	 the	 perceptron	 builds	 a	 prediction	 model
based	on	these	five	steps:
1)						Inputs	are	fed	into	the	processor.
2)					The	perceptron	applies	weights	to	estimate	the	value	of	those	inputs.
3)	 	 	 	 	 The	 perceptron	 computes	 the	 error	 between	 the	 estimate	 and	 the	 actual

value.
4)						The	perceptron	adjusts	its	weights	according	to	the	error.
5)	 	 	 	 	 These	 four	 steps	 are	 repeated	 until	 you	 are	 satisfied	 with	 the	 model’s

accuracy.	The	training	model	can	then	be	applied	to	the	test	data.
To	illustrate	this	process,	let’s	say	we	have	a	perceptron	consisting	of	two	inputs:

Input	1:	x1	=	24
Input	2:	x2	=	16

We	then	add	a	random	weight	to	these	two	inputs,	and	they	are	sent	to	the	neuron
for	processing.

Figure	49:	Weights	are	added	to	the	perceptron

Weights
Input	1:	0.5
Input	2:	-1

Next,	we	multiply	each	weight	by	its	input:
Input	1:	24	*	0.5	=	12
Input	2:	16	*	-1	=	-16

Although	the	perceptron	produces	a	binary	output	(0	or	1),	there	are	many	ways
to	configure	the	activation	function.	For	this	example,	we	will	set	the	activation
function	to	≥	0.	This	means	that	if	the	sum	is	a	positive	number	or	equal	to	zero,
then	the	output	is	1.	Meanwhile,	if	the	sum	is	a	negative	number,	the	output	is	0.

Figure	50:	Activation	function	where	the	output	(y)	is	0	when	x	is	negative,	and	the	output	(y)	is	1	when	x	is
positive

Thus:
Input	1:	24	*	0.5	=	12
Input	2:	16	*	-1.0	=	-16
Sum	(Σ):	12	+	-16	=	-4

As	a	numeric	value	less	than	zero,	the	result	produces	“0”	and	does	not	trigger
the	 perceptron’s	 activation	 function.	 Given	 this	 error,	 the	 perceptron	 needs	 to
adjust	its	weights	in	response.

Updated	weights:
Input	1:	24	*	0.5	=	12
Input	2:	16	*	-0.5	=	-8
Sum	(Σ):	12	+	-16	=	4

As	 a	 positive	 outcome,	 the	 perceptron	 now	 produces	 “1”	 which	 triggers	 the
activation	function,	and	if	in	a	larger	network,	this	would	trigger	the	next	layer
of	analysis.
In	this	example,	the	activation	function	was	≥	0.	We	could,	though,	modify	the
activation	threshold	to	follow	a	different	rule,	such	as:
x	>	3,	y	=	1
x	≤	3,	y	=	0

Figure	51:	Activation	function	where	the	output	(y)	is	0	when	x	is	equal	to	or	less	than	3,	and	the	output	(y)
is	1	when	x	is	greater	than	3

A	weakness	of	a	perceptron	 is	 that	because	 the	output	 is	binary	(0	or	1),	small
changes	 in	 the	weights	 or	 bias	 in	 any	 single	 perceptron	within	 a	 larger	 neural
network	can	induce	polarizing	results.	This	can	lead	to	dramatic	changes	within
the	network	and	 flip	 the	 final	output,	which	makes	 it	difficult	 to	 train	a	model
that	is	accurate	with	new	data.
An	 alternative	 to	 the	 perceptron	 is	 the	 sigmoid	 neuron	 .	 A	 sigmoid	 neuron	 is
similar	 to	 a	 perceptron,	 but	 the	 presence	 of	 a	 sigmoid	 function	 rather	 than	 a
binary	 filter	 now	 accepts	 any	 value	 between	 0	 and	 1.	 This	 enables	 more
flexibility	 to	 absorb	 small	 changes	 in	 edge	weights	without	 triggering	 inverse

results—as	the	output	is	no	longer	binary.	In	other	words,	the	output	won’t	flip
due	to	a	minor	change	to	an	edge	weight	or	input	value.
While	more	 flexible	 than	a	perceptron,	a	 sigmoid	neuron	 is	unable	 to	generate
negative	values.	Hence,	a	third	option	is	the	hyperbolic	tangent	function	.

Figure	52:	A	hyperbolic	tangent	function	graph

We	have	 so	 far	 discussed	 basic	 neural	 networks;	 to	 develop	 a	more	 advanced
neural	 network,	 we	 can	 link	 sigmoid	 neurons	 and	 other	 classifiers	 to	 create	 a
network	with	a	higher	number	of	layers	or	combine	multiple	perceptrons	to	form
a	multilayer	perceptron.

Multilayer	Perceptrons
The	 multilayer	 perceptron	 (MLP),	 as	 with	 other	 ANN	 techniques,	 is	 an
algorithm	for	predicting	a	categorical	(classification)	or	continuous	(regression)
target	 variable.	 Multilayer	 perceptrons	 are	 powerful	 because	 they	 aggregate
multiple	 models	 into	 a	 unified	 prediction	 model,	 as	 demonstrated	 by	 the
classification	model	shown	in	Figure	48.

Figure	53:	A	multilayer	perceptron	used	to	classify	a	social	media	user’s	political	preference

In	 this	 example,	 the	MLP	model	 is	 divided	 into	 three	 layers.	 The	 input	 layer
consists	 of	 four	 nodes	 representing	 an	 input	 feature	 used	 to	 predict	 a	 social
media	user’s	political	preference:	Age,	City,	Education,	and	Gender.	A	function
is	 then	applied	 to	each	 input	variable	 to	create	a	new	layer	of	nodes	called	 the
middle	or	hidden	layer.	Each	node	in	the	hidden	layer	represents	a	function,	such
as	 a	 sigmoid	 function,	 but	with	 its	 own	 unique	weights/hyperparameters.	 This
means	that	each	input	variable,	 in	effect,	 is	exposed	to	five	different	functions.
Simultaneously,	the	hidden	layer	nodes	are	exposed	to	all	four	features.
The	 final	 output	 layer	 for	 this	 model	 consists	 of	 two	 discrete	 outcomes:
Conservative	Party	or	Democratic	Party,	which	classifies	the	sample	user’s	likely
political	 preference.	 Note	 that	 the	 number	 of	 nodes	 at	 each	 layer	 will	 vary
according	to	the	number	of	input	features	and	the	target	variable(s).
In	 general,	multilayer	 perceptrons	 are	 ideal	 for	 interpreting	 large	 and	 complex
datasets	 with	 no	 time	 or	 computational	 restraints.	 Less	 compute-intensive
algorithms,	such	as	decision	trees	and	logistic	regression,	for	example,	are	more
efficient	 for	 working	 with	 smaller	 datasets.	 Given	 their	 high	 number	 of
hyperparameters,	 multilayer	 perceptrons	 also	 demand	more	 time	 and	 effort	 to
tune	than	other	algorithms.	In	regards	to	processing	time,	a	multilayer	perceptron
takes	 longer	 to	 run	 than	 most	 shallow	 learning	 techniques	 including	 logistic
regression	but	is	generally	faster	than	SVM.

Deep	Learning
For	 analyzing	 less	 complex	 patterns,	 a	 basic	 multilayer	 perceptron	 or	 an
alternative	 classification	 algorithm	 such	 as	 logistic	 regression	 and	 k	 -nearest

neighbors	can	be	put	into	practice.	However,	as	patterns	in	the	data	become	more
complicated—especially	 in	 the	 form	of	 a	model	with	 a	 high	 number	 of	 inputs
such	 as	 image	 pixels—a	 shallow	 model	 is	 no	 longer	 reliable	 or	 capable	 of
sophisticated	analysis	because	the	model	becomes	exponentially	complicated	as
the	number	of	inputs	increases.	A	neural	network,	with	a	deep	number	of	layers,
though,	can	be	used	to	interpret	a	high	number	of	input	features	and	break	down
complex	patterns	into	simpler	patterns,	as	shown	in	Figure	54.

Figure	54:	Facial	recognition	using	deep	learning.	Source:	kdnuggets.com

This	 deep	 neural	 network	 uses	 edges	 to	 detect	 different	 physical	 features	 to
recognize	 faces,	 such	 as	 a	 diagonal	 line.	 Like	 building	 blocks,	 the	 network
combines	the	node	results	to	classify	the	input	as,	say,	a	human’s	face	or	a	cat’s
face	 and	 then	 advances	 further	 to	 recognize	 individual	 characteristics.	 This	 is
known	as	deep	learning	.	What	makes	deep	learning	“deep”	is	the	stacking	of	at
least	5-10	node	layers.
Object	 recognition,	 as	 used	 by	 self-driving	 cars	 to	 recognize	 objects	 such	 as
pedestrians	 and	 other	 vehicles,	 uses	 upward	 of	 150	 layers	 and	 is	 a	 popular
application	 of	 deep	 learning.	Other	 applications	 of	 deep	 learning	 include	 time
series	analysis	to	analyze	data	trends	measured	over	set	time	periods	or	intervals,
speech	recognition,	and	text	processing	tasks	including	sentiment	analysis,	topic
segmentation,	 and	 named	 entity	 recognition.	 More	 usage	 scenarios	 and
commonly	paired	deep	learning	techniques	are	listed	in	Table	13.

Table	13:	Common	usage	scenarios	and	paired	deep	learning	techniques

As	can	be	seen	from	this	table,	multilayer	perceptrons	(MLP)	have	largely	been
superseded	 by	 new	 deep	 learning	 techniques	 such	 as	 convolution	 networks,
recurrent	networks,	deep	belief	networks,	and	recursive	neural	 tensor	networks
(RNTN).	 These	 more	 advanced	 versions	 of	 a	 neural	 network	 can	 be	 used
effectively	 across	 a	 number	 of	 practical	 applications	 that	 are	 in	 vogue	 today.
While	convolution	networks	are	arguably	the	most	popular	and	powerful	of	deep
learning	techniques,	new	methods	and	variations	are	continuously	evolving.

CHAPTER	QUIZ

Using	 a	multilayer	perceptron	 ,	 your	 job	 is	 to	 create	 a	model	 to	 classify	 the
gender	sex)	of	penguins	that	have	been	affected	and	rescued	in	a	natural	disaster.
However,	 you	 can	 only	 use	 the	 physical	 attributes	 of	 penguins	 to	 train	 your
model.	Please	note	that	this	dataset	has	244	rows.

1)					How	many	output	nodes	does	the	multilayer	perceptron	need	to	predict
the	dependent	variable	of	sex	(gender)?

2)	 	 	 	 	Which	 of	 the	 seven	 variables	 could	we	 use	 as	 independent	 variables
based	on	only	the	penguin’s	physical	attributes?

3)					Which	is	a	more	transparent	classification	algorithm	that	we	could	use
in	replace	of	a	multilayer	perceptron?

A.						Simple	linear	regression
B.						Logistic	regression
C.						k	-means	clustering
D.						Multiple	linear	regression

ANSWERS
1)						2	nodes	(male	and	female)

2)						bill_length_mm,	bill_depth_mm,	flipper_length_mm,	body_mass_g

3)						B,	Logistic	regression

14

DECISION	TREES
The	idea	that	artificial	neural	networks	can	be	used	to	solve	a	wider	spectrum	of
learning	 tasks	 than	 other	 techniques	 has	 led	 some	 pundits	 to	 hail	ANN	 as	 the
ultimate	 machine	 learning	 algorithm.	 While	 there	 is	 a	 strong	 case	 for	 this
argument,	this	isn’t	to	say	that	ANN	fits	the	bill	as	a	silver	bullet	algorithm.	In
certain	 cases,	 neural	 networks	 fall	 short,	 and	 decision	 trees	 are	 held	 up	 as	 a
popular	counterargument.
The	huge	amount	of	 input	data	and	computational	resources	required	to	 train	a
neural	network	is	the	first	downside	of	any	attempt	to	solve	all	machine	learning
problems	using	this	technique.	Neural	network-based	applications	like	Google's
image	 recognition	 engine	 rely	 on	 millions	 of	 tagged	 examples	 to	 recognize
classes	 of	 simple	 objects	 (such	 as	 dogs)	 and	 not	 every	 organization	 has	 the
resources	 available	 to	 feed	 and	 power	 a	 model	 of	 that	 size.	 The	 other	 major
downside	 of	 neural	 networks	 is	 the	 black-box	 dilemma,	 which	 conceals	 the
model’s	decision	structure.	Decision	trees,	on	the	other	hand,	are	transparent	and
easy	 to	 interpret.	 They	 work	 with	 less	 data	 and	 consume	 less	 computational
resources.	These	benefits	make	decision	trees	a	popular	alternative	to	deploying
a	neural	network	for	less	complex	use	cases.
Decision	trees	are	used	primarily	for	solving	classification	problems	but	can	also
be	used	as	a	regression	model	to	predict	numeric	outcomes.	Classification	trees
predict	 categorical	 outcomes	 using	 numeric	 and	 categorical	 variables	 as	 input,
whereas	 regression	 trees	 predict	 numeric	 outcomes	 using	 numeric	 and
categorical	variables	as	 input.	Decision	trees	can	be	applied	to	a	wide	range	of
use	cases;	from	picking	a	scholarship	recipient,	to	predicting	e-commerce	sales,
and	selecting	the	right	job	applicant.

Figure	55:	Example	of	a	regression	tree

Figure	56:	Example	of	a	classification	tree

Part	of	the	appeal	of	decision	trees	is	they	can	be	displayed	graphically	and	they
are	easy	 to	explain	 to	non-experts.	When	a	customer	queries	why	they	weren’t
selected	for	a	home	loan,	for	example,	you	can	share	the	decision	tree	to	show
the	decision-making	process,	which	isn’t	possible	using	a	black-box	technique.

Building	a	Decision	Tree
Decision	trees	start	with	a	root	node	that	acts	as	a	starting	point	and	is	followed
by	splits	that	produce	branches,	also	known	as	edges	.	The	branches	then	link	to
leaves,	 also	 known	 as	 nodes	 ,	 which	 form	 decision	 points.	 This	 process	 is
repeated	using	the	data	points	collected	in	each	new	leaf.	A	final	categorization
is	 produced	when	 a	 leaf	 no	 longer	 generates	 any	 new	 branches	 and	 results	 in
what’s	called	a	terminal	node.
Beginning	first	at	the	root	node,	decision	trees	analyze	data	by	splitting	data	into
subsets,	with	a	node	for	each	value	of	the	variable	(i.e.	sunny,	overcast,	rainy).
The	aim	is	to	keep	the	tree	as	small	as	possible.	This	is	achieved	by	selecting	a
variable	 that	 optimally	 splits	 the	 data	 into	 homogenous	 groups,	 such	 that	 it
minimizes	the	level	of	data	entropy	at	the	next	branch.
Entropy	is	a	mathematical	concept	that	explains	the	measure	of	variance	in	the
data	among	different	classes.	In	simple	terms,	we	want	the	data	at	each	layer	to
be	more	 homogenous	 than	 the	 previous	 partition.	We	 therefore	want	 to	 pick	 a
“greedy”	algorithm	that	can	reduce	entropy	at	each	layer	of	the	tree.	An	example
of	 a	 greedy	 algorithm	 is	 the	 Iterative	 Dichotomizer	 (ID3),	 invented	 by	 J.R.
Quinlan.	 This	 is	 one	 of	 three	 decision	 tree	 implementations	 developed	 by
Quinlan,	hence	the	“3.”	At	each	layer,	ID3	identifies	a	variable	(converted	into	a
binary	question)	that	produces	the	least	entropy	at	the	next	layer.
To	understand	how	this	works,	let’s	consider	the	following	example.

Table	14:	Employee	characteristics

In	 this	 table	 we	 have	 ten	 employees,	 three	 input	 variables	 (Exceeded	 KPIs,
Leadership	Capability,	Aged	<	30),	and	one	output	variable	(Outcome).	Our	aim
is	to	classify	whether	an	employee	will	be	promoted/not	promoted	based	on	the
assessment	of	the	three	input	variables.

Let’s	first	split	the	data	by	variable	1	(Exceeded	Key	Performance	Indicators):
-	Six	promoted	employees	who	exceeded	their	KPIs	(Yes).
-	 Four	 employees	who	did	 not	 exceed	 their	KPIs	 and	who	were	 not	 promoted
(No).

This	variable	produces	two	homogenous	groups	at	the	next	layer.

Black	=	Promoted,	White	=	Not	Promoted

Now	let’s	try	variable	2	(Leadership	Capability),	which	produces:
-											Two	promoted	employees	with	leadership	capabilities	(Yes).
-											Four	promoted	employees	with	no	leadership	capabilities	(No).
-											Two	employees	with	leadership	capabilities	who	were	not	promoted	(Yes).
-	 	 	 	 	 	 	 	 	 	 	Two	employees	with	no	 leadership	capabilities	who	were	not	promoted

(No).
This	variable	produces	two	groups	of	mixed	data	points.

Black	=	Promoted,	White	=	Not	Promoted

Lastly,	we	have	variable	3	(Aged	Under	30),	which	produces:
-											Three	promoted	employees	aged	under	thirty	(Yes).

-											Three	promoted	employees	aged	over	thirty	(No).
-											Four	employees	aged	under	thirty	who	were	not	promoted	(Yes).
This	 variable	 produces	 one	 homogenous	 group	 and	 one	 mixed	 group	 of	 data
points.

Black	=	Promoted,	White	=	Not	Promoted

Of	these	three	variables,	variable	1	(Exceeded	KPIs)	produces	the	best	split	with
two	perfectly	homogenous	groups.	Variable	3	produces	the	second-best	outcome,
as	 one	 leaf	 is	 homogenous.	 Variable	 2	 produces	 two	 leaves	 that	 are
heterogeneous.	Variable	1	would	therefore	be	selected	as	the	first	binary	question
to	split	this	dataset.
Whether	 it’s	 ID3	 or	 another	 algorithm,	 this	 process	 of	 splitting	 data	 into	 sub-
partitions,	known	as	recursive	partitioning	,	is	repeated	until	a	stopping	criterion
is	met.	A	stopping	point	can	be	based	on	a	range	of	criteria,	such	as:
-											When	all	leaves	contain	less	than	3-5	items.
-											When	a	branch	produces	a	result	that	places	all	items	in	one	binary	leaf.

Calculating	Entropy
In	this	next	section,	we	will	review	the	mathematical	calculations	for	finding	the
variables	that	produce	the	lowest	entropy.
As	mentioned,	building	a	decision	tree	starts	with	setting	a	variable	as	the	root
node,	with	each	outcome	for	 that	variable	assigned	a	branch	 to	a	new	decision
node,	i.e.	“Yes”	and	“No.”	A	second	variable	is	then	chosen	to	split	the	variables
further	to	create	new	branches	and	decision	nodes.
As	we	want	the	nodes	to	collect	as	many	instances	of	the	same	class	as	possible,
we	 need	 to	 select	 each	 variable	 strategically	 based	 on	 entropy,	 also	 called

information	 value	 .	 Measured	 in	 units	 called	 bits	 (using	 a	 base	 2	 logarithm
expression),	entropy	is	calculated	based	on	the	composition	of	data	points	found
in	each	node.
Using	 the	following	 logarithm	equation,	we	will	calculate	 the	entropy	for	each
potential	variable	split	expressed	in	bits	between	0	and	1.

(-	p	1	log	p	1	-	p	2	log	p	2)	/	log2

Please	 note	 the	 logarithm	 equations	 can	 be	 quickly	 calculated	 online	 using
Google	Calculator.

Yes:	p1	[6,6]	and	p2	[0,6]
No:	p1	[4,4]	and	p2	[0,4]

Step	1:	Find	entropy	of	each	node
(-p	1	logp	1	-	p	2	logp	2)	/	log2
Yes:	(-6/6*log6/6	-	0/6*log0/6)	/	log2	=	0
No:	(-4/4*log4/4	-	0/4*log0/4)	/	log2	=	0

Step	2:	Multiply	entropy	of	the	two	nodes	in	accordance	to	the	total	number	of
data	points	(10)

Yes:	p1	[2,4]	and	p2	[2,4]
No:	p1	[4,6]	and	p2	[2,6]

Step	1:	Find	entropy	of	each	node
Yes:	(-2/4*log2/4	-	2/4*log2/4)	/	log2	=	1
No:	(-4/6*log4/6	-	2/6*log2/6)	/	log2	=	0.91829583405

Step	2:	Multiple	entropy	of	the	two	nodes	by	total	number	of	data	points
(4/10)	x	1	+	(6/10)	x	0.918
0.4	+	0.5508 	=	0.9508

Yes:	p1	[3,7]	and	p2	[4,7]

No:	p1	[3,3]	and	p2	[0,3]

Step	1:	Find	entropy	of	each	node
Yes:	(-3/7*log3/7	-	4/7*log4/7)	/	log2	=	0.98522813603
No:	(-3/3*log3/3	-	0/3*log0/3)	/	log2	=	0

Step	2:	Multiple	entropy	of	the	two	nodes	by	total	number	of	data	points
(7/10)	x	0.985	+	(3/10)	x	0
0.6895	+	0	=	0.6895

Results
Exceeded	KPIs	=	0	bits
Leadership	Capability	=	0.9508	bits
Aged	<	30	=	0.6895	bits

Based	 on	 our	 calculations,	 the	 variable	 Exceeded	 KPIs	 generates	 a	 perfect
classification,	which	means	we	don’t	need	to	develop	 the	 tree	any	further	after
examining	this	variable.	The	next	best	candidate	was	the	variable	Aged	<	30	at
0.6895	bits.	Leadership	Capability	 had	 the	 highest	 entropy	with	 0.9508	 bits,
which	equates	to	a	high	level	of	disorder	and	almost	no	information	gain.	In	fact,
we	can	calculate	 the	entropy	of	 the	data	prior	 to	any	potential	split	 to	question
the	need	for	analyzing	this	variable.

Promoted	6/10,	Not	Promoted	4/10
(-6/10*log6/10	-	4/10*log4/10)	/	log2	=	0.971
0.971	-	0.9508	=	0.0202

Thus,	 subtracting	 the	 original	 entropy	 of	 the	 dataset	 by	 the	 variable	 of
Leadership	Capability	 leads	 to	 a	marginal	 0.0202	 bits	 in	 overall	 information
gain.

Overfitting
A	notable	caveat	of	decision	 trees	 is	 their	susceptibility	 to	overfit	 the	model	 to
the	 training	 data.	 Based	 on	 the	 patterns	 extracted	 from	 the	 training	 data,	 a
decision	 tree	 is	 precise	 at	 analyzing	 and	 decoding	 the	 first	 round	 of	 data.
However,	the	same	decision	tree	may	then	fail	to	classify	the	test	data,	as	there
could	be	rules	that	it’s	yet	to	encounter	or	because	the	training/test	data	split	was
not	representative	of	the	full	dataset.	Also,	because	decision	trees	are	formed	by

repeatedly	splitting	data	points	into	partitions,	a	slight	change	to	how	the	data	is
split	at	the	top	or	middle	of	the	tree	could	dramatically	alter	the	final	prediction
and	produce	a	different	tree	altogether.	The	offender,	in	this	case,	is	our	greedy
algorithm.
Starting	with	the	first	split	of	the	data,	the	greedy	algorithm	picks	a	variable	that
best	partitions	the	data	into	homogenous	groups.	Like	a	kid	seated	in	front	of	a
box	of	cupcakes,	the	greedy	algorithm	is	oblivious	to	the	future	repercussions	of
its	short-term	actions.	The	variable	used	to	first	split	the	data	does	not	guarantee
the	most	accurate	model	at	the	end	of	production.	Instead,	a	less	effective	split	at
the	 top	 of	 the	 tree	 might	 produce	 a	 more	 accurate	 model.	 Thus,	 although
decision	trees	are	highly	visual	and	effective	at	classifying	a	single	set	of	data,
they	are	also	inflexible	and	vulnerable	to	overfitting,	especially	for	datasets	with
high	pattern	variance.

Bagging
Rather	 than	 aiming	 for	 the	 most	 efficient	 split	 at	 each	 round	 of	 recursive
partitioning,	an	alternative	technique	is	to	construct	multiple	trees	and	combine
their	 predictions.	 A	 popular	 example	 of	 this	 technique	 is	 bagging,	 which
involves	growing	multiple	decision	 trees	using	a	randomized	selection	of	 input
data	 for	 each	 tree	 and	 combining	 the	 results	 by	 averaging	 the	 output	 (for
regression)	or	voting	(for	classification).
A	 key	 characteristic	 of	 bagging	 is	 bootstrap	 sampling	 .	 For	multiple	 decision
trees	 to	generate	unique	 insight,	 there	needs	 to	be	 an	 element	of	variation	 and
randomness	 across	 each	 model.	 There’s	 little	 sense	 in	 compiling	 five	 or	 ten
identical	 models.	 Bootstrap	 sampling	 overcomes	 this	 problem	 by	 extracting	 a
random	variation	of	the	data	at	each	round,	and	in	the	case	of	bagging,	different
variations	 of	 the	 training	 data	 are	 run	 through	 each	 tree.	 While	 this	 doesn’t
eliminate	 the	 problem	 of	 overfitting,	 the	 dominant	 patterns	 in	 the	 dataset	will
appear	in	a	higher	number	of	trees	and	emerge	in	the	final	class	or	prediction.	As
a	result,	bagging	is	an	effective	algorithm	for	dealing	with	outliers	and	lowering
the	degree	of	variance	typically	found	with	a	single	decision	tree.

Random	Forests
A	closely	related	technique	to	bagging	is	random	forests	.	While	both	techniques
grow	 multiple	 trees	 and	 utilize	 bootstrap	 sampling	 to	 randomize	 the	 data,
random	forests	artificially	limit	the	choice	of	variables	by	capping	the	number	of
variables	considered	for	each	split.	In	other	words,	the	algorithm	is	not	allowed
to	consider	all	n	variables	at	each	partition.

In	 the	 case	of	bagging,	 the	 trees	often	 look	 similar	 because	 they	use	 the	 same
variable	early	in	their	decision	structure	in	a	bid	to	reduce	entropy.	This	means
the	trees’	predictions	are	highly	correlated	and	closer	to	a	single	decision	tree	in
regards	 to	 overall	 variance.	 Random	 forests	 sidestep	 this	 problem	 by	 forcing
each	split	to	consider	a	limited	subset	of	variables,	which	gives	other	variables	a
greater	chance	of	selection,	and	by	averaging	unique	and	uncorrelated	trees,	the
final	decision	structure	is	less	variable	and	often	more	reliable.	As	the	model	is
trained	using	a	 subset	of	variables	 fewer	 than	 those	actually	available,	 random
forests	are	considered	a	weakly-supervised	learning	technique.

Figure	57:	Example	of	growing	random	trees	to	produce	a	prediction

In	general,	random	forests	favor	a	high	number	of	trees	(i.e.	100+)	to	smooth	out
the	potential	impact	of	outliers,	but	there	is	a	diminishing	rate	of	effectiveness	as
more	trees	are	added.	At	a	certain	level,	new	trees	may	not	add	any	significant
improvement	 to	 the	 model	 other	 than	 to	 extend	 the	 model’s	 processing	 time.
While	it	will	depend	on	your	dataset,	100-150	decision	trees	is	a	recommended
starting	 point.	 Author	 and	 data	 expert	 Scott	 Hartshorn	 advises	 focusing	 on
optimizing	other	hyperparameters	before	adding	more	trees	to	the	initial	model,
as	this	will	reduce	processing	time	in	the	short-term	and	increasing	the	number

of	trees	later	should	provide	at	least	some	added	benefit.	[24]
While	 random	forests	 are	versatile	 and	work	well	 at	 interpreting	complex	data
patterns,	 other	 techniques	 including	 gradient	 boosting	 tend	 to	 return	 superior
prediction	accuracy.	Random	forests,	though,	are	fast	to	train	and	work	well	for
obtaining	a	quick	benchmark	model.

Boosting
Boosting	is	another	family	of	algorithms	that	centers	on	aggregating	a	large	pool
of	decision	trees.	The	emphasis	of	boosting	algorithms	is	on	combining	“weak”
models	into	one	“strong”	model.	The	term	“weak”	means	the	initial	model	is	a
poor	 predictor	 and	perhaps	marginally	 better	 than	 a	 random	guess.	A	 “strong”
model,	meanwhile,	is	considered	a	reliable	predictor	of	the	true	target	output.
The	 concept	 of	 developing	 strong	 learners	 from	weak	 learners	 is	 achieved	 by
adding	weights	to	trees	based	on	misclassified	cases	in	the	previous	tree.	This	is
similar	 to	a	school	 teacher	 improving	his	or	her	class’	performance	by	offering
extra	tutoring	to	students	that	performed	badly	on	the	most	recent	exam.
One	of	the	more	popular	boosting	algorithms	is	gradient	boosting	 .	Rather	than
selecting	 combinations	 of	 variables	 at	 random,	 gradient	 boosting	 selects
variables	 that	 improve	 prediction	 accuracy	 with	 each	 new	 tree.	 The	 decision
trees	are	therefore	grown	sequentially,	as	each	tree	is	created	using	information
derived	from	the	previous	 tree,	 rather	 than	 independently.	Mistakes	 incurred	 in
the	training	data	are	recorded	and	then	applied	to	the	next	round	of	training	data.
At	each	iteration,	weights	are	added	to	the	training	data	based	on	the	results	of
the	 previous	 iteration.	 A	 higher	 weighting	 is	 applied	 to	 instances	 that	 were
incorrectly	 predicted	 from	 the	 training	 data,	 and	 instances	 that	 were	 correctly
predicted	 receive	 less	 attention.	 Earlier	 iterations	 that	 don’t	 perform	well	 and
that	 perhaps	misclassified	 data	 can	 subsequently	 be	 improved	 upon	 in	 further
iterations.	This	 process	 is	 repeated	 until	 there’s	 a	 low	 level	 of	 error.	The	 final
result	is	then	obtained	from	a	weighted	average	of	the	total	predictions	derived
from	each	decision	tree.

Figure	58:	Example	of	reducing	prediction	error	across	multiple	trees	to	produce	a	prediction

Boosting	also	mitigates	the	issue	of	overfitting	and	it	does	so	using	fewer	trees
than	random	forests.	While	adding	more	trees	to	a	random	forest	usually	helps	to
offset	overfitting,	the	same	process	can	cause	overfitting	in	the	case	of	boosting
and	caution	should	be	taken	as	new	trees	are	added.
The	 tendency	 of	 boosting	 algorithms	 towards	 overfitting	 can	 be	 explained	 by
their	 highly-tuned	 focus	 of	 learning	 and	 reiterating	 from	 earlier	 mistakes.
Although	this	typically	translates	to	more	accurate	predictions—superior	to	that
of	most	algorithms—it	can	lead	to	mixed	results	in	the	case	of	data	stretched	by
a	high	number	of	outliers.	In	general,	machine	learning	models	should	not	fit	too
close	to	outlier	cases,	but	this	can	be	difficult	for	boosting	algorithms	to	obey	as
they	 are	 constantly	 reacting	 to	 errors	 observed	 and	 isolated	during	production.
For	complex	datasets	with	a	large	number	of	outliers,	random	forests	may	be	a
preferred	alternative	approach	to	boosting.
The	other	main	downside	of	boosting	 is	 the	 slow	processing	 speed	 that	 comes
with	training	a	sequential	decision	model.	As	trees	are	trained	sequentially,	each
tree	must	wait	for	the	previous	tree,	thereby	limiting	the	production	scalability	of
the	model	and	especially	as	more	trees	are	added.	A	random	forest,	meanwhile,
is	trained	in	parallel,	making	it	faster	to	train.
The	 final	 downside,	 which	 applies	 to	 boosting	 as	 well	 as	 random	 forests	 and

bagging,	 is	 the	 loss	 of	 visual	 simplicity	 and	 ease	 of	 interpretation	 that	 comes
with	using	a	single	decision	 tree.	When	you	have	hundreds	of	decision	 trees	 it
becomes	more	difficult	to	visualize	and	interpret	the	overall	decision	structure.
If,	 however,	 you	 have	 the	 time	 and	 resources	 to	 train	 a	 boosting	model	 and	 a
dataset	with	 consistent	 patterns,	 the	 final	model	can	be	 extremely	worthwhile.
Once	 deployed,	 predictions	 from	 the	 trained	 decision	model	 can	 be	 generated
quickly	 and	 accurately	 using	 this	 algorithm,	 and	 outside	 of	 deep	 learning,
boosting	is	one	of	the	most	popular	algorithms	in	machine	learning	today.

CHAPTER	QUIZ

Your	 task	 is	 to	 predict	 the	 body	 mass	 (body_mass_g)	 of	 penguins	 using	 the
penguin	dataset	and	the	random	forests	algorithm.

1)	 Which	 variables	 could	 we	 use	 as	 independent	 variables	 to	 train	 our
model?

2)	To	 train	 a	quick	benchmark	model,	 gradient	boosting	 is	 faster	 to	 train
than	random	forests.	True	or	False?

3)	Which	tree-based	technique	can	be	easily	visualized?
A.	Decision	trees
B.	Gradient	boosting
C.	Random	forests

ANSWERS

1)						All	variables	except	for	body_mass_g
(Tree-based	techniques	work	well	with	both	discrete	and	continuous	variables	as
input	variables.)

2)						False
(Gradient	boosting	runs	sequentially,	making	it	slower	to	train.	A	random	forest
is	trained	simultaneously,	making	it	faster	to	train.)

3)						A,	Decision	trees

15

ENSEMBLE	MODELING
When	 making	 important	 decisions,	 we	 generally	 prefer	 to	 collate	 multiple
opinions	 as	 opposed	 to	 listening	 to	 a	 single	 perspective	 or	 the	 first	 person	 to
voice	their	opinion.	Similarly,	it’s	important	to	consider	and	trial	more	than	one
algorithm	to	find	the	best	model	for	your	data.	In	advanced	machine	learning,	it
can	 even	 be	 advantageous	 to	 combine	 algorithms	 or	 models	 using	 a	 method
called	 ensemble	 modeling	 ,	 which	 amalgamates	 outputs	 to	 build	 a	 unified
prediction	 model.	 By	 combining	 the	 output	 of	 different	 models	 (instead	 of
relying	on	a	single	estimate),	ensemble	modeling	helps	to	build	a	consensus	on
the	meaning	of	the	data.	Aggregated	estimates	are	also	generally	more	accurate
than	 any	 one	 technique.	 It’s	 vital,	 though,	 for	 the	 ensemble	models	 to	 display
some	degree	of	variation	to	avoid	mishandling	the	same	errors.
In	 the	 case	 of	 classification,	 multiple	 models	 are	 consolidated	 into	 a	 single
prediction	using	a	voting	system	[25]	based	on	frequency,	or	numeric	averaging	in
the	case	of	 regression	problems.	 [26]	 ,	 [27]	Ensemble	models	 can	also	be	divided
into	sequential	or	parallel	and	homogenous	or	heterogeneous.
Let’s	start	by	looking	at	sequential	and	parallel	models.	In	the	case	of	the	former,
the	 model’s	 prediction	 error	 is	 reduced	 by	 adding	 weights	 to	 classifiers	 that
previously	 misclassified	 data.	 Gradient	 boosting	 and	 AdaBoost	 (designed	 for
classification	 problems)	 are	 both	 examples	 of	 sequential	 models.	 Conversely,
parallel	 ensemble	 models	 work	 concurrently	 and	 reduce	 error	 by	 averaging.
Random	forests	are	an	example	of	this	technique.
Ensemble	 models	 can	 be	 generated	 using	 a	 single	 technique	 with	 numerous
variations,	known	as	a	homogeneous	ensemble,	or	through	different	techniques,
known	as	a	heterogeneous	ensemble.	An	example	of	a	homogeneous	ensemble
model	 would	 be	 multiple	 decision	 trees	 working	 together	 to	 form	 a	 single
prediction	(i.e.	bagging).	Meanwhile,	an	example	of	a	heterogeneous	ensemble
would	be	the	usage	of	k	 -means	clustering	or	a	neural	network	in	collaboration
with	a	decision	tree	algorithm.
Naturally,	it’s	important	to	select	techniques	that	complement	each	other.	Neural

networks,	for	instance,	require	complete	data	for	analysis,	whereas	decision	trees
are	 competent	 at	 handling	 missing	 values.	 [28]	 Together,	 these	 two	 techniques
provide	 added	 benefit	 over	 a	 homogeneous	 model.	 The	 neural	 network
accurately	predicts	the	majority	of	instances	where	a	value	is	provided,	and	the
decision	 tree	 ensures	 that	 there	 are	 no	 “null”	 results	 that	 would	 otherwise
materialize	from	missing	values	using	a	neural	network.
While	the	performance	of	an	ensemble	model	outperforms	a	single	algorithm	in
the	majority	of	cases,	[29]	the	degree	of	model	complexity	and	sophistication	can
pose	as	a	potential	drawback.	An	ensemble	model	triggers	the	same	trade-off	in
benefits	as	a	single	decision	tree	and	a	collection	of	trees,	where	the	transparency
and	ease	of	interpretation	of,	say	decision	trees,	is	sacrificed	for	the	accuracy	of
a	 more	 complex	 algorithm	 such	 as	 random	 forests,	 bagging	 or	 boosting.	 The
performance	of	 the	model	will	win	out	 in	most	cases,	but	 interpretability	 is	an
important	factor	to	consider	when	choosing	the	right	algorithm(s)	for	your	data.
In	 terms	 of	 selecting	 a	 suitable	 ensemble	 modeling	 technique,	 there	 are	 four
main	methods:	bagging,	boosting,	a	bucket	of	models,	and	stacking.
As	 a	 heterogeneous	 ensemble	 technique,	 a	 bucket	 of	 models	 trains	 multiple
different	algorithmic	models	using	the	same	training	data	and	then	picks	the	one
that	performed	most	accurately	on	the	test	data.
Bagging	 ,	 as	 we	 know,	 is	 an	 example	 of	 parallel	 model	 averaging	 using	 a
homogenous	ensemble,	which	draws	upon	 randomly	drawn	data	and	combines
predictions	to	design	a	unified	model.
Boosting	is	a	popular	alternative	technique	that	is	still	a	homogenous	ensemble
but	addresses	error	and	data	misclassified	by	the	previous	iteration	to	produce	a
sequential	 model.	 Gradient	 boosting	 and	 AdaBoost	 are	 both	 examples	 of
boosting	algorithms.
Stacking	 runs	multiple	models	simultaneously	on	 the	data	and	combines	 those
results	to	produce	a	final	model.	Unlike	boosting	and	bagging,	stacking	usually
combines	outputs	 from	different	 algorithms	 (heterogenous)	 rather	 than	altering
the	 hyperparameters	 of	 the	 same	 algorithm	 (homogenous).	 Also,	 rather	 than
assigning	equal	trust	to	each	model	using	averaging	or	voting,	stacking	attempts
to	 identify	 and	 add	 emphasis	 to	 well-performing	models.	 This	 is	 achieved	 by
smoothing	out	the	error	rate	of	models	at	the	base	level	(known	as	level-0)	using
a	weighting	 system,	 before	 pushing	 those	 outputs	 to	 the	 level-1	model	 where
they	are	combined	and	consolidated	into	a	final	prediction.

Figure	59:	Stacking	algorithm

While	this	technique	is	sometimes	used	in	industry,	the	gains	of	using	a	stacking
technique	are	marginal	in	line	with	the	level	of	the	complexity,	and	organizations
usually	opt	for	the	ease	and	efficiency	of	boosting	or	bagging.	Stacking,	though,
is	 a	 go-to	 technique	 for	 machine	 learning	 competitions	 like	 the	 Kaggle
Challenges	 and	 the	Netflix	Prize.	The	Netflix	 competition,	 held	 between	 2006
and	2009,	offered	a	prize	for	a	machine	learning	model	that	could	significantly
improve	Netflix’s	content	recommender	system.	One	of	the	winning	techniques,
from	 the	 team	BellKor’s	Pragmatic	Chaos	 ,	 adopted	 a	 form	of	 linear	 stacking
that	 blended	 predictions	 from	 hundreds	 of	 different	 models	 using	 different
algorithms.

16

DEVELOPMENT	ENVIRONMENT
After	examining	 the	statistical	underpinnings	of	numerous	algorithms,	 it’s	 time
to	turn	our	attention	to	the	coding	component	of	machine	learning	and	installing
a	development	environment.
Although	 there	 are	 various	 options	 in	 regards	 to	 programming	 languages	 (as
outlined	in	Chapter	4),	Python	has	been	chosen	for	this	three-part	exercise	as	it’s
easy	 to	 learn	 and	widely	 used	 in	 industry	 and	 online	 learning	 courses.	 If	 you
don't	 have	 any	 experience	 in	 programming	 or	 coding	 with	 Python,	 there’s	 no
need	 to	worry.	Feel	 free	 to	skip	 the	code	and	focus	on	 the	 text	explanations	 to
understand	 the	 steps	 involved.	 A	 primer	 on	 programming	with	 Python	 is	 also
included	in	the	Appendix	section	of	this	book.
As	 for	 our	 development	 environment,	we	will	 be	 installing	 Jupyter	Notebook,
which	is	an	open-source	web	application	that	allows	for	the	editing	and	sharing
of	 code	 notebooks.	 Jupyter	 Notebook	 can	 be	 installed	 using	 the	 Anaconda
Distribution	or	Python’s	package	manager,	pip.	As	an	experienced	Python	user,
you	 may	 wish	 to	 install	 Jupyter	 Notebook	 via	 pip,	 and	 there	 are	 instructions
available	 on	 the	 Jupyter	 Notebook	 website	 (http://jupyter.org/install.html)
outlining	 this	 option.	 For	 beginners,	 I	 recommend	 choosing	 the	 Anaconda
Distribution	 option,	 which	 offers	 an	 easy	 click-and-drag	 setup
(https://www.anaconda.com/products/individual/).
This	installation	option	will	direct	you	to	the	Anaconda	website.	From	there,	you
can	select	an	Anaconda	installer	for	Windows,	macOS,	or	Linux.	Again,	you	can
find	 instructions	 available	 on	 the	 Anaconda	 website	 as	 per	 your	 choice	 of
operating	system.
After	installing	Anaconda	to	your	machine,	you’ll	have	access	to	a	range	of	data
science	applications	including	rstudio,	Jupyter	Notebook,	and	graphviz	for	data
visualization.	For	this	exercise,	select	Jupyter	Notebook	by	clicking	on	“Launch”
inside	the	Jupyter	Notebook	tab.

Figure	60:	The	Anaconda	Navigator	portal

To	initiate	Jupyter	Notebook,	run	the	following	command	from	the	Terminal	(for
Mac/Linux)	or	Command	Prompt	(for	Windows):

jupyter	notebook

Terminal/Command	Prompt	then	generates	a	URL	for	you	to	copy	and	paste	into
your	web	browser.	Example:	http://localhost:8888/
Copy	 and	 paste	 the	 generated	 URL	 into	 your	 web	 browser	 to	 load	 Jupyter
Notebook.	 Once	 you	 have	 Jupyter	 Notebook	 open	 in	 your	 browser,	 click	 on
“New”	 in	 the	 top	 right-hand	 corner	 of	 the	 web	 application	 to	 create	 a	 new
notebook	project,	and	then	select	“Python	3.”	You’re	now	ready	to	begin	coding.
Next,	we’ll	explore	the	basics	of	working	in	Jupyter	Notebook.

Figure	61:	Screenshot	of	a	new	notebook

Import	Libraries
The	 first	 step	 of	 any	 machine	 learning	 project	 in	 Python	 is	 installing	 the
necessary	code	libraries.	These	libraries	will	differ	from	project	to	project	based
on	 the	 composition	 of	 your	 data	 and	 what	 you	 wish	 to	 achieve,	 i.e.,	 data
visualization,	ensemble	modeling,	deep	learning,	etc.

Figure	62:	Import	Pandas

In	 the	 code	 snippet	 above	 is	 the	 example	 code	 to	 import	 Pandas,	 which	 is	 a
popular	Python	library	used	in	machine	learning.

Import	Dataset	and	Preview
We	can	now	use	Pandas	to	import	our	dataset.	I’ve	selected	a	free	and	publicly
available	 dataset	 from	 kaggle.com	 which	 contains	 data	 on	 house,	 unit,	 and
townhouse	prices	 in	Melbourne,	Australia.	This	dataset	comprises	data	scraped
from	publicly	available	listings	posted	weekly	on	www.domain.com.au.	The	full
dataset	 contains	 34,857	 property	 listings	 and	 21	 variables	 including	 address,
suburb,	land	size,	number	of	rooms,	price,	longitude,	latitude,	postcode,	etc.
The	 Melbourne_housing_FULL	 dataset	 can	 be	 downloaded	 from	 this	 link:
https://www.kaggle.com/anthonypino/melbourne-housing-market/.

After	 registering	 a	 free	 account	 and	 logging	 into	 kaggle.com,	 download	 the
dataset	as	a	zip	file.	Next,	unzip	the	downloaded	file	and	import	it	into	Jupyter

Notebook.	To	import	the	dataset,	you	can	use	pd.read_cs	v 	to	 load	 the	data	 into	a
Pandas	dataframe	(tabular	dataset).

df	=	pd.read_csv('~/Downloads/Melbourne_housing_FULL.csv')

This	 command	 directly	 imports	 the	 dataset	 into	 Jupyter	 Notebook.	 However,
please	note	that	the	file	path	depends	on	the	saved	location	of	your	dataset	and
your	 computer’s	 operating	 system.	 For	 example,	 if	 you	 saved	 the	CSV	 file	 to
your	(Mac)	desktop,	you	would	need	to	import	the	.csv	file	using	the	following
command:

df	=	pd.read_csv('~/Desktop/Melbourne_housing_FULL.csv')

In	my	 case,	 I	 imported	 the	 dataset	 from	my	Downloads	 folder.	 As	 you	move
forward	 in	 machine	 learning	 and	 data	 science,	 it’s	 important	 that	 you	 save
datasets	 and	 projects	 in	 standalone	 and	 named	 folders	 for	 organized	 access.	 If
you	opt	to	save	the	.csv	in	the	same	folder	as	your	Jupyter	Notebook,	you	won’t
need	to	append	a	directory	name	or	~/ 	.

Figure	63:	Import	dataset	as	a	dataframe

If	saved	to	Desktop	on	Windows,	you	would	import	the	.csv	file	using	a	structure
similar	to	this	example:

df	=	pd.read_csv('C:\\Users\\John\\Desktop\\Melbourne_housing_FULL.csv')

Next,	use	the	head() 	command	to	preview	the	dataframe.

df.head()

Right-click	and	select	“Run”	or	navigate	from	the	Jupyter	Notebook	menu:	Cell
>	Run	All

Figure	64:	“Run	All"	from	the	navigation	menu

This	 populates	 the	 dataset	 as	 a	 Pandas	 dataframe	within	 Jupyter	 Notebook	 as
shown	in	Figure	65.

Figure	65:	Previewing	a	dataframe	in	Jupyter	Notebook

The	default	number	of	rows	displayed	using	the	head() 	command	is	five.	To	set
an	alternative	number	of	rows	to	display,	enter	the	desired	number	directly	inside
the	parentheses	as	shown	below	in	Figure	66.

df.head(10)

Figure	66:	Previewing	a	dataframe	with	10	rows

This	now	previews	a	dataframe	with	 ten	 rows.	You’ll	 also	notice	 that	 the	 total
number	 of	 rows	 and	 columns	 (10	 rows	 x	 21	 columns)	 is	 listed	 below	 the
dataframe	on	the	left-hand	side.

Find	Row	Item
While	 the	 hea	d 	command	 is	 useful	 for	 gaining	 a	 general	 idea	 of	 the	 shape	 of
your	 dataframe,	 it’s	 difficult	 to	 find	 specific	 information	 from	 datasets	 with
hundreds	or	thousands	of	rows.	In	machine	learning,	you	often	need	to	locate	a
specific	row	by	matching	a	row	number	with	its	row	information.	For	example,
if	our	machine	learning	model	finds	that	row	100	is	 the	most	suitable	house	to
recommend	to	a	potential	buyer,	we	next	need	to	see	which	house	that	is	in	the
dataframe.
This	can	be	achieved	by	using	the	iloc[] 	command	as	shown	here:

Figure	67:	Finding	a	row	using	.iloc[]

In	this	example,	df.iloc[100] 	is	used	to	find	the	row	indexed	at	position	100	in	the
dataframe,	which	 is	a	property	 located	 in	Airport	West.	Be	careful	 to	note	 that
the	 first	 row	 in	 a	 Python	 dataframe	 is	 indexed	 as	 0.	 Thus,	 the	 Airport	 West
property	is	technically	the	101st	property	contained	in	the	dataframe.

Print	Columns
The	 final	 code	 snippet	 I’d	 like	 to	 introduce	 to	 you	 is	 column	 s 	 ,	 which	 is	 a
convenient	method	 to	 print	 the	 dataset’s	 column	 titles.	 This	 will	 prove	 useful
later	 when	 configuring	 which	 features	 to	 select,	 modify	 or	 remove	 from	 the
model.

df.columns

Figure	68:	Print	columns

Again,	“Run”	the	code	to	view	the	outcome,	which	in	this	case	is	the	21	column
titles	and	their	data	type	(dtype),	which	is	‘object.’	You	may	notice	that	some	of
the	column	titles	are	misspelled.	We’ll	discuss	this	issue	in	the	next	chapter.

17

BUILDING	A	MODEL	IN	PYTHON
We’re	now	ready	to	design	a	full	machine	learning	model	building	on	the	code
introduced	in	the	previous	chapter.
For	 this	exercise,	we	will	design	a	house	price	valuation	system	using	gradient
boosting	following	these	six	steps:
1)						Import	libraries
2)						Import	dataset
3)						Scrub	dataset
4)						Split	data	into	training	and	test	data
5)						Select	an	algorithm	and	configure	its	hyperparameters
6)						Evaluate	the	results

1)	Import	Libraries
To	build	our	model,	we	first	need	 to	 import	Pandas	and	a	number	of	 functions
from	 Scikit-learn,	 including	 gradient	 boosting	 (ensemble)	 and	 mean	 absolute
error	to	evaluate	performance.
Import	 each	 of	 the	 following	 libraries	 by	 entering	 these	 exact	 commands	 in
Jupyter	Notebook:

#Import	libraries
import	pandas	as	pd
from	sklearn.model_selection	import	train_test_split
from	sklearn	import	ensemble
from	sklearn.metrics	import	mean_absolute_error

Don’t	worry	if	you	don’t	recognize	each	of	the	Scikit-learn	libraries	displayed	in
the	code	snippet	above	as	they	will	be	referred	to	in	later	steps.

2)	Import	Dataset
Use	the	pd.read_cs	v 	command	to	load	the	Melbourne	Housing	Market	dataset	(as
we	did	in	the	previous	chapter)	into	a	Pandas	dataframe.

df	=	pd.read_csv('~/Downloads/Melbourne_housing_FULL.csv')

Please	 also	 note	 that	 the	 property	 values	 in	 this	 dataset	 are	 expressed	 in
Australian	Dollars—$1	AUD	is	approximately	$0.77	USD	(as	of	2017).

Table	15:	Melbourne	housing	dataset	variables

3)	Scrub	Dataset
This	 next	 stage	 involves	 scrubbing	 the	 dataset.	 Remember,	 scrubbing	 is	 the
process	 of	 refining	 your	 dataset	 such	 as	 modifying	 or	 removing	 incomplete,
irrelevant	 or	 duplicated	 data.	 It	 may	 also	 entail	 converting	 text-based	 data	 to
numeric	values	and	the	redesigning	of	features.
It’s	worthwhile	to	note	that	some	aspects	of	data	scrubbing	may	take	place	prior
to	 importing	 the	 dataset	 into	 the	 development	 environment.	 For	 instance,	 the
creator	 of	 the	Melbourne	Housing	Market	 dataset	misspelled	 “Longitude”	 and

“Latitude”	in	the	head	columns.	As	we	will	not	be	examining	these	two	variables
in	our	model,	there’s	no	need	to	make	any	changes.	If,	however,	we	did	choose
to	include	these	 two	variables	 in	our	model,	 it	would	be	prudent	 to	amend	this
error	in	the	source	file.
From	 a	 programming	 perspective,	 spelling	 mistakes	 contained	 in	 the	 column
titles	don’t	pose	a	problem	as	long	as	we	apply	the	same	spelling	to	perform	our
code	 commands.	 However,	 this	 misnaming	 of	 columns	 could	 lead	 to	 human
errors,	 especially	 if	 you	 are	 sharing	 your	 code	 with	 other	 team	 members.	 To
avoid	confusion,	it’s	best	to	fix	spelling	mistakes	and	other	simple	errors	in	the
source	 file	 before	 importing	 the	 dataset	 into	 Jupyter	 Notebook	 or	 another
development	environment.	You	can	do	this	by	opening	the	CSV	file	in	Microsoft
Excel	(or	equivalent	program),	editing	the	dataset,	and	then	resaving	it	again	as	a
CSV	file.
While	simple	errors	can	be	corrected	in	the	source	file,	major	structural	changes
to	the	dataset	such	as	removing	variables	or	missing	values	are	best	performed	in
the	development	environment	 for	added	 flexibility	and	 to	preserve	 the	original
dataset	 for	 future	 use.	 Manipulating	 the	 composition	 of	 the	 dataset	 in	 the
development	environment	is	less	permanent	and	is	generally	easier	and	quicker
to	implement	than	doing	so	in	the	source	file.

Scrubbing	Process
Let’s	 remove	 columns	we	don’t	wish	 to	 include	 in	 the	model	 using	 the	 delete
command	and	entering	the	vector	(column)	titles	we	wish	to	remove.

#	The	misspellings	of	“longitude”	and	“latitude”	are	preserved	here
del	df['Address']
del	df['Method']
del	df['SellerG']
del	df['Date']
del	df['Postcode']
del	df['Lattitude']
del	df['Longtitude']
del	df['Regionname']
del	df['Propertycount']

The	 Address,	 Regionname,	 Postcode,	 Latitude,	 and	 Longitude	 columns	 were
removed	 as	 property	 location	 is	 contained	 in	 other	 columns	 (Suburb	 and
CouncilArea).	My	assumption	is	that	Suburb	and	CouncilArea	have	more	sway
in	 buyers’	 minds	 than	 Postcode,	 Latitude,	 and	 Longitude—although	 Address

deserves	an	honorable	mention.
Method,	SellerG,	Propertycount,	and	Date	were	also	removed	because	they	were
deemed	 to	have	 less	 relevance	 in	comparison	 to	other	variables.	This	 is	not	 to
say	 that	 these	 variables	 don’t	 impact	 property	 prices;	 rather	 the	 other	 eleven
independent	variables	are	sufficient	for	building	our	initial	model.	We	can	decide
to	add	any	one	of	 these	variables	 into	 the	model	 later,	 and	you	may	choose	 to
include	them	in	your	own	model.
The	 remaining	 eleven	 independent	 variables	 from	 the	 dataset	 are	 Suburb,
Rooms,	 Type,	 Distance,	 Bedroom2,	 Bathroom,	 Car,	 Landsize,	 BuildingArea,
YearBuilt,	 and	 CouncilArea.	 The	 twelfth	 variable	 is	 the	 dependent	 variable
which	 is	 Price.	 As	mentioned,	 decision	 tree-based	models	 (including	 gradient
boosting	and	random	forests)	are	adept	at	managing	large	and	high-dimensional
datasets	with	a	high	number	of	input	variables.
The	 next	 step	 for	 scrubbing	 the	 dataset	 is	 to	 remove	 missing	 values.	 While
there’s	a	number	of	methods	to	manage	missing	values	(e.g.,	populating	empty
cells	 with	 the	 dataset’s	 mean	 value,	 median	 value	 or	 deleting	 missing	 values
altogether),	for	this	exercise,	we	want	to	keep	the	dataset	as	simple	as	possible,
and	we’ll	not	be	examining	rows	with	missing	values.	The	obvious	downside	is
that	we	have	a	reduced	amount	of	data	to	analyze.
As	a	beginner,	it	makes	sense	to	master	complete	datasets	before	adding	an	extra
dimension	 of	 complexity	 in	 attempting	 to	 deal	 with	 missing	 values.
Unfortunately,	 in	 the	 case	 of	 our	 sample	 dataset,	we	do	have	 a	 lot	 of	missing
values!	 Nonetheless,	 there	 are	 still	 ample	 rows	 available	 to	 proceed	 with
building	our	model	after	removing	those	that	contain	missing	values.
The	 following	 Pandas	 command	 can	 be	 used	 to	 remove	 rows	 with	 missing
values.	For	more	information	about	the	dropn	a 	method	and	its	parameters,	please
see	Table	16	or	the	Pandas	documentation.	[30]

df.dropna(axis	=	0,	how	=	'any',	thresh	=	None,	subset	=	None,	inplace	=	True)

Table	16:	Dropna	parameters

Keep	 in	 mind	 too	 that	 it’s	 important	 to	 drop	 rows	 with	 missing	 values	 after
applying	 the	 delete	 command	 to	 remove	 columns	 (as	 shown	 in	 the	 previous
step).	 This	 way,	 there’s	 a	 better	 chance	 of	 preserving	 more	 rows	 from	 the
original	dataset.	Imagine	dropping	a	whole	row	because	it	was	missing	the	value
for	a	variable	that	would	later	be	deleted	such	as	a	missing	post	code!
Next,	 let’s	 convert	 columns	 that	 contain	 non-numeric	 data	 to	 numeric	 values
using	one-hot	encoding.	With	Pandas,	one-hot	encoding	can	be	performed	using
the	pd.	get_dummie	s 	method.

df	=	pd.get_dummies(df,	columns	=	['Suburb',	'CouncilArea',	'Type'])

This	code	command	converts	column	values	for	Suburb,	CouncilArea,	and	Type
into	numeric	values	through	the	application	of	one-hot	encoding.
Lastly,	assign	the	dependent	and	independent	variables	with	Price	as	y	and	X	as
the	remaining	11	variables	(with	Price	dropped	from	the	dataframe	using	the	dro
p 	method).

X	=	df.drop('Price',axis=1)
y	=	df['Price']

4)	Split	the	Dataset
We	are	now	at	the	stage	of	splitting	the	data	into	training	and	test	segments.	For
this	exercise,	we’ll	proceed	with	a	standard	70/30	split	by	calling	the	Scikit-learn
command	below	with	a	test_siz	e 	of	“0.3”	and	shuffling	the	dataset.

X_train,	X_test,	y_train,	y_test	=	train_test_split(X,	y,	test_size	=	0.3,	shuffle	=	True)

5)	Select	Algorithm	and	Configure	Hyperparameters
Next	we	need	to	assign	our	chosen	algorithm	(gradient	boosting	regressor)	as	a
new	variable	(model)	and	configure	its	hyperparameters	as	demonstrated	below.

model	=	ensemble.GradientBoostingRegressor(
n_estimators	=	150,
learning_rate	=	0.1,
max_depth	=	30,
min_samples_split	=	4,
min_samples_leaf	=	6,
max_features	=	0.6,
loss	=	'huber'

)

The	first	 line	 is	 the	algorithm	itself	 (gradient	boosting)	and	comprises	 just	one
line	of	code.	The	code	below	dictates	the	hyperparameters	that	accompany	this
algorithm.
n_estimators	states	the	number	of	decision	trees.	Recall	 that	a	high	number	of
trees	 generally	 improves	 accuracy	 (up	 to	 a	 certain	 point)	 but	 will	 inevitably
extend	 the	 model’s	 processing	 time.	 I	 have	 selected	 150	 decision	 trees	 as	 an
initial	starting	point.
learning_rate	controls	 the	rate	at	which	additional	decision	 trees	 influence	 the
overall	prediction.	This	effectively	 shrinks	 the	 contribution	of	 each	 tree	by	 the
set	 learning_rat	 e 	 .	 Inserting	a	 low	rate	here,	 such	as	0.1,	 should	help	 to	 improve
accuracy.
max_depth	 defines	 the	maximum	 number	 of	 layers	 (depth)	 for	 each	 decision
tree.	If	“None”	is	selected,	then	nodes	expand	until	all	leaves	are	pure	or	until	all
leaves	contain	less	than	min_samples_lea	f 	 .	Here,	 I	have	chosen	a	high	maximum
number	of	layers	(30),	which	will	have	a	dramatic	effect	on	the	final	output,	as
we’ll	soon	see.
min_samples_split	defines	the	minimum	number	of	samples	required	to	execute
a	new	binary	 split.	 For	 example,	min_samples_split	 =	 1	0 	means	 there	must	 be	 ten

available	samples	in	order	to	create	a	new	branch.
min_samples_leaf	represents	the	minimum	number	of	samples	that	must	appear
in	each	child	node	(leaf)	before	a	new	branch	can	be	implemented.	This	helps	to
mitigate	 the	 impact	 of	 outliers	 and	 anomalies	 in	 the	 form	of	 a	 low	number	 of
samples	 found	 in	 one	 leaf	 as	 a	 result	 of	 a	 binary	 split.	 For	 example,
min_samples_leaf	=	4 	requires	there	to	be	at	least	four	available	samples	within	each
leaf	for	a	new	branch	to	be	created.
max_features	 is	 the	 total	 number	 of	 features	 presented	 to	 the	 model	 when
determining	 the	 best	 split.	 As	 mentioned	 in	 Chapter	 14,	 random	 forests	 and
gradient	 boosting	 restrict	 the	number	of	 features	 fed	 to	 each	 individual	 tree	 to
create	multiple	results	that	can	be	voted	upon	later.
If	an	 integer	(whole	number),	 the	model	will	consider	max_feature	 s 	at	each	split
(branch).	If	the	value	is	a	float	(e.g.,	0.6),	then	max_feature	s 	 is	 the	percentage	of
total	features	randomly	selected.	Although	it	sets	a	maximum	number	of	features
to	consider	in	identifying	the	best	split,	total	features	may	exceed	the	set	limit	if
no	split	can	initially	be	made.
loss	calculates	the	model's	error	rate.	For	this	exercise,	we	are	using	hube	r 	which
protects	against	outliers	and	anomalies.	Alternative	error	rate	options	include	l	s
(least	squares	regression),	 la	d 	 (least	absolute	deviations),	and	quantil	 e 	 (quantile
regression).	Huber	is	actually	a	combination	of	least	squares	regression	and	least
absolute	deviations.
To	 learn	 more	 about	 gradient	 boosting	 hyperparameters,	 please	 refer	 to	 the
Scikit-learn	documentation	for	this	algorithm.	[31]
After	 setting	 the	 model’s	 hyperparameters,	 we’ll	 use	 the	 fit() 	 function	 from
Scikit-learn	 to	 link	 the	 training	 data	 to	 the	 learning	 algorithm	 stored	 in	 the
variable	mode	l 	to	train	the	prediction	model.

model.fit(X_train,	y_train)

6)	Evaluate	the	Results
After	the	model	has	been	trained,	we	can	use	the	predict() 	 function	from	Scikit-
learn	to	run	the	model	on	the	X_trai	n 	data	and	evaluate	 its	performance	against
the	actual	y_trai	n 	data.	As	mentioned	earlier,	for	this	exercise	we	are	using	mean
absolute	error	to	evaluate	the	accuracy	of	the	model.

mae_train	=	mean_absolute_error(y_train,	model.predict(X_train))
print	("Training	Set	Mean	Absolute	Error:	%.2f"	%	mae_train)

Here,	we	 input	our	y_trai	n 	values,	which	 represent	 the	 correct	 results	 from	 the

training	dataset.	The	predict() 	function	is	called	on	the	X_trai	n 	 set	and	generates
predictions.	The	mean_absolute_erro	r 	function	then	compares	the	difference	between
the	actual	values	and	the	model’s	predictions.	The	second	line	of	the	code	then
prints	 the	 results	 to	 two	decimal	places	 alongside	 the	 string	 (text)	 “ 	Training	 Set
Mean	Absolute	Error	: 	”.	The	same	process	is	also	repeated	using	the	test	data.

mae_test	=	mean_absolute_error(y_test,	model.predict(X_test))
print	("Test	Set	Mean	Absolute	Error:	%.2f"	%	mae_test)

Let’s	 now	 run	 the	 entire	 model	 by	 right-clicking	 and	 selecting	 “Run”	 or
navigating	from	the	Jupyter	Notebook	menu:	Cell	>	Run	All.
Wait	30	seconds	or	 longer	for	 the	computer	 to	process	 the	 training	model.	The
results,	as	shown	below,	will	then	appear	at	the	bottom	of	the	notebook.

Training	Set	Mean	Absolute	Error:	27834.12
Test	Set	Mean	Absolute	Error:	168262.14

For	this	model,	our	training	set’s	mean	absolute	error	is	$27,834.12,	and	the	test
set’s	 mean	 absolute	 error	 is	 $168,262.14.	 This	 means	 that	 on	 average,	 the
training	set	miscalculated	the	actual	property	value	by	$27,834.12.	The	test	set,
meanwhile,	miscalculated	the	property	value	by	$168,262.14	on	average.
This	means	that	our	training	model	was	accurate	at	predicting	the	actual	value	of
properties	contained	in	the	training	data.	While	$27,834.12	may	seem	like	a	lot
of	 money,	 this	 average	 error	 value	 is	 low	 given	 the	 maximum	 range	 of	 our
dataset	 is	$8	million.	As	many	of	 the	properties	 in	 the	dataset	are	 in	excess	of
seven	figures	($1,000,000+),	$27,834.12	constitutes	a	reasonably	low	error	rate.
How	did	the	model	fare	with	the	test	data?	The	test	data	provided	less	accurate
predictions	 with	 an	 average	 error	 rate	 of	 $168,262.14.	 A	 high	 discrepancy
between	 the	 training	 and	 test	 data	 is	 usually	 an	 indicator	 of	 overfitting	 in	 the
model.	As	our	model	is	tailored	to	patterns	in	the	training	data,	it	stumbled	when
making	 predictions	 using	 the	 test	 data,	 which	 probably	 contains	 new	 patterns
that	 the	model	 hasn’t	 seen.	 The	 test	 data,	 of	 course,	 is	 likely	 to	 carry	 slightly
different	patterns	and	new	potential	outliers	and	anomalies.
However,	 in	 this	 case,	 the	 difference	 between	 the	 training	 and	 test	 data	 is
exacerbated	 because	we	 configured	 our	model	 to	 overfit	 the	 training	 data.	An
example	 of	 this	 issue	was	 setting	max_dept	 h 	 to	 “30.”	Although	 placing	 a	 high
maximum	 depth	 improves	 the	 chances	 of	 the	 model	 finding	 patterns	 in	 the
training	data,	it	does	tend	to	lead	to	overfitting.
Lastly,	 please	 take	 into	 account	 that	 because	 the	 training	 and	 test	 data	 are

shuffled	 randomly,	 and	 data	 is	 fed	 to	 decision	 trees	 at	 random,	 the	 predicted
results	will	differ	slightly	when	replicating	this	model	on	your	own	machine.

A	video	version	of	this	chapter	is	available	as	a	mini	course	at
https://scatterplotpress.teachable.com/p/house-prediction-model.	 The	 mini
course	 is	 free	and	 lets	you	follow	along	step-by-step	through	the	workflow
described	in	this	chapter.

18

MODEL	OPTIMIZATION
In	 the	 previous	 chapter	we	 built	 our	 first	 supervised	 learning	model.	We	 now
want	to	improve	its	prediction	accuracy	with	future	data	and	reduce	the	effects	of
overfitting.	 A	 good	 starting	 point	 is	 to	 modify	 the	 model’s	 hyperparameters.
Holding	 the	 other	 hyperparameters	 constant,	 let’s	 begin	 by	 adjusting	 the
maximum	 depth	 from	 “30”	 to	 “5.”	 The	 model	 now	 generates	 the	 following
results:

Training	Set	Mean	Absolute	Error:	135283.69

Although	the	mean	absolute	error	of	the	training	set	is	now	higher,	this	helps	to
reduce	 the	 issue	 of	 overfitting	 and	 should	 improve	 the	 model’s	 performance.
Another	step	to	optimize	the	model	is	to	add	more	trees.	If	we	set	n_estimator	s 	to
250,	we	now	see	these	results	from	the	model:

Training	Set	Mean	Absolute	Error:	124469.48
Test	Set	Mean	Absolute	Error:	161602.45

This	 second	 optimization	 reduces	 the	 training	 set’s	 absolute	 error	 rate	 by
approximately	$11,000	and	there	is	a	smaller	gap	between	the	training	and	test
results	for	mean	absolute	error.	[32]
Together,	these	two	optimizations	underline	the	importance	of	understanding	the
impact	of	individual	hyperparameters.	If	you	decide	to	replicate	this	supervised
machine	learning	model	at	home,	I	recommend	that	you	test	modifying	each	of
the	 hyperparameters	 individually	 and	 analyze	 their	 impact	 on	 mean	 absolute
error	using	the	training	data.	In	addition,	you’ll	notice	changes	in	the	machine’s
processing	time	based	on	the	chosen	hyperparameters.	Changing	the	maximum
number	 of	 branch	 layers	 (max_dept	 h),	 for	 example,	 from	 “30”	 to	 “5”	 will
dramatically	 reduce	 total	 processing	 time.	Processing	 speed	 and	 resources	will
become	an	 important	 consideration	when	you	move	on	 to	working	with	 larger
datasets.
Another	 important	 optimization	 technique	 is	 feature	 selection.	 Earlier,	 we

removed	 nine	 features	 from	 the	 dataset	 but	 now	 might	 be	 a	 good	 time	 to
reconsider	 those	 features	and	 test	whether	 they	have	an	 impact	on	 the	model’s
prediction	 accuracy.	 “SellerG”	 would	 be	 an	 interesting	 feature	 to	 add	 to	 the
model	 because	 the	 real	 estate	 company	 selling	 the	 property	might	 have	 some
impact	on	the	final	selling	price.
Alternatively,	dropping	features	from	the	current	model	may	reduce	processing
time	 without	 having	 a	 significant	 impact	 on	 accuracy—or	may	 even	 improve
accuracy.	When	selecting	features,	 it’s	best	 to	 isolate	feature	modifications	and
analyze	the	results,	rather	than	applying	various	changes	at	once.
While	manual	trial	and	error	can	be	a	useful	technique	to	understand	the	impact
of	variable	 selection	and	hyperparameters,	 there	are	also	automated	 techniques
for	model	 optimization,	 such	 as	grid	search	 .	Grid	 search	 allows	 you	 to	 list	 a
range	 of	 configurations	 you	 wish	 to	 test	 for	 each	 hyperparameter	 and
methodically	test	each	of	those	possible	hyperparameters.	An	automated	voting
process	 then	 takes	 place	 to	 determine	 the	 optimal	 model.	 As	 the	model	 must
examine	each	possible	combination	of	hyperparameters,	grid	search	does	take	a
long	 time	 to	 run!	 [33]	 It	 sometimes	 helps	 to	 run	 a	 relatively	 coarse	 grid	 search
using	consecutive	powers	of	10	 (i.e.	0.01,	0.1,	1,	10)	and	 then	 run	a	 finer	grid
search	around	the	best	value	identified.	 [34]	Example	code	for	grid	search	using
Scikit-learn	is	included	at	the	end	of	this	chapter.
Another	way	of	optimizing	algorithm	hyperparameters	is	the	randomized	search
method	using	Scikit-learn’s	RandomizedSearchCV.	This	method	trials	far	more
hyperparameters	 per	 round	 than	 grid	 search	 (which	 only	 changes	 one	 single
hyperparameter	per	round)	as	it	uses	a	random	value	for	each	hyperparameter	at
each	 round.	Randomized	search	also	makes	 it	 simple	 to	 specify	 the	number	of
trial	 rounds	 and	 control	 computing	 resources.	 Grid	 search,	 meanwhile,	 runs
based	on	 the	full	number	of	hyperparameter	combinations,	which	 isn’t	obvious
from	looking	at	the	code	and	might	take	more	time	than	expected.
Finally,	if	you	wish	to	use	a	different	supervised	machine	learning	algorithm	and
not	 gradient	 boosting,	 the	 majority	 of	 the	 code	 used	 in	 this	 exercise	 can	 be
reused.	For	instance,	the	same	code	can	be	used	to	import	a	new	dataset,	preview
the	 dataframe,	 remove	 features	 (columns),	 remove	 rows,	 split	 and	 shuffle	 the
dataset,	 and	 evaluate	 mean	 absolute	 error.	 The	 official	 website	 http://scikit-
learn.org	is	also	a	great	resource	to	learn	more	about	other	algorithms	as	well	as
gradient	boosting	used	in	this	exercise.
To	learn	how	to	input	and	test	an	individual	house	valuation	using	the	model	we
have	built	in	these	two	chapters,	please	see	this	more	advanced	tutorial	available
on	 the	 Scatterplot	 Press	 website:	 http://www.scatterplotpress.com/blog/bonus-chapter-valuing-

http://www.scatterplotpress.com/blog/bonus-chapter-valuing-individual-property/

individual-property/	.	In	addition,	 if	you	have	trouble	implementing	the	model	using
the	 code	 found	 in	 this	 book,	 please	 contact	 the	 author	 by	 email	 for	 assistance
(oliver.theobald@scatterplotpress.com).

Code	for	the	Optimized	Model

#	Import	libraries
import	pandas	as	pd
from	sklearn.model_selection	import	train_test_split
from	sklearn	import	ensemble
from	sklearn.metrics	import	mean_absolute_error

#	Read	in	data	from	CSV
df	=	pd.read_csv('~/Downloads/Melbourne_housing_FULL.csv')

#	Delete	unneeded	columns
del	df['Address']
del	df['Method']
del	df['SellerG']
del	df['Date']
del	df['Postcode']
del	df['Lattitude']
del	df['Longtitude']
del	df['Regionname']
del	df['Propertycount']

#	Remove	rows	with	missing	values
df.dropna(axis	=	0,	how	=	'any',	thresh	=	None,	subset	=	None,	inplace	=	True)

#	Convert	non-numeric	data	using	one-hot	encoding
df	=	pd.get_dummies(df,	columns	=	['Suburb',	'CouncilArea',	'Type'])

#	Assign	X	and	y	variables
X	=	df.drop('Price',axis=1)
y	=	df['Price']

#	Split	data	into	test/train	set	(70/30	split)	and	shuffle
X_train,	X_test,	y_train,	y_test	=	train_test_split(X,	y,	test_size	=	0.3,	shuffle	=	True)

#	Set	up	algorithm
model	=	ensemble.GradientBoostingRegressor(

n_estimators	=	250,
learning_rate	=	0.1,
max_depth	=	5,
min_samples_split	=	4,

min_samples_leaf	=	6,
max_features	=	0.6,
loss	=	'huber'

)

#	Run	model	on	training	data
model.fit(X_train,	y_train)

#	Check	model	accuracy	(up	to	two	decimal	places)
mae_train	=	mean_absolute_error(y_train,	model.predict(X_train))
print	("Training	Set	Mean	Absolute	Error:	%.2f"	%	mae_train)

mae_test	=	mean_absolute_error(y_test,	model.predict(X_test))
print	("Test	Set	Mean	Absolute	Error:	%.2f"	%	mae_test)

Code	for	Grid	Search	Model

#	Import	libraries,	including	GridSearchCV
import	pandas	as	pd
from	sklearn.model_selection	import	train_test_split
from	sklearn	import	ensemble
from	sklearn.metrics	import	mean_absolute_error
from	sklearn.model_selection	import	GridSearchCV

#	Read	in	data	from	CSV
df	=	pd.read_csv('~/Downloads/Melbourne_housing_FULL.csv')

#	Delete	unneeded	columns
del	df['Address']
del	df['Method']
del	df['SellerG']
del	df['Date']
del	df['Postcode']
del	df['Lattitude']
del	df['Longtitude']
del	df['Regionname']
del	df['Propertycount']

#	Remove	rows	with	missing	values
df.dropna(axis	=	0,	how	=	'any',	thresh	=	None,	subset	=	None,	inplace	=	True)

#	Convert	non-numeric	data	using	one-hot	encoding
df	=	pd.get_dummies(df,	columns	=	['Suburb',	'CouncilArea',	'Type'])

#	Assign	X	and	y	variables
X	=	df.drop('Price',axis=1)
y	=	df['Price']

#	Split	data	into	test/train	set	(70/30	split)	and	shuffle
X_train,	X_test,	y_train,	y_test	=	train_test_split(X,	y,	test_size	=	0.3,	shuffle	=	True)

#	Input	algorithm
model	=	ensemble.GradientBoostingRegressor()

#	Set	the	configurations	that	you	wish	to	test.	To	minimize	processing	time,	limit	num.	of	variables	or
experiment	on	each	hyperparameter	separately.

hyperparameters	=	{
				'n_estimators':	[200,	300],
				'max_depth':	[4,	6],
					'min_samples_split':	[3,	4],
				'min_samples_leaf':	[5,	6],
				'learning_rate':	[0.01,	0.02],
				'max_features':	[0.8,	0.9],
				'loss':	['ls',	'lad',	'huber']
}

#	Define	grid	search.	Run	with	four	CPUs	in	parallel	if	applicable.
grid	=	GridSearchCV(model,	hyperparameters,	n_jobs	=	4)

#	Run	grid	search	on	training	data
grid.fit(X_train,	y_train)

#	Return	optimal	hyperparameters
grid.best_params_

#	Check	model	accuracy	using	optimal	hyperparameters
mae_train	=	mean_absolute_error(y_train,	grid.predict(X_train))
print	("Training	Set	Mean	Absolute	Error:	%.2f"	%	mae_train)

mae_test	=	mean_absolute_error(y_test,	grid.predict(X_test))
print	("Test	Set	Mean	Absolute	Error:	%.2f"	%	mae_test)

NEXT	STEPS
6	Video	Tutorials

To	 take	 the	 next	 step	 in	 machine	 learning,	 I	 have	 prepared	 the	 following	 six
video	 tutorials,	 which	 provide	 a	 gentle	 introduction	 to	 coding	 your	 own
prediction	models	 in	Python	using	 free	online	datasets.	After	 completing	 these
exercises,	 you	 will	 be	 well	 on	 your	 way	 to	 designing	 your	 own	 prediction
models	and	tackling	more	advanced	resources.

-											Linear	regression
-											Logistic	regression
-											Support	vector	machines
-											k	-nearest	neighbors
-											k	-means	clustering
-											Decision	trees

You	 can	 find	 these	 six	 free	 video	 tutorials	 at
https://scatterplotpress.teachable.com/p/ml-code-exercises	.

Building	a	House	Prediction	Model	in	Python

Also,	remember	that	there	is	a	free	bonus	chapter	available	online	where	you’ll
learn	 the	code	and	process	 to	generate	an	 individual	house	valuation	using	 the
model	we	built	in	Chapter	17.

You	 can	 find	 the	 tutorial	 at	 http://www.scatterplotpress.com/blog/bonus-chapter-valuing-
individual-property/	.

Other	Resources
To	further	your	study	of	machine	learning,	I	strongly	recommend	enrolling	in	the
free	 Andrew	 Ng	 Machine	 Learning	 course	 on	 Coursera	 and	 also	 check	 out
OCDevel’s	 podcast	 series:	Machine	 Learning	 Guide	 ,	 which	 is	 the	 best	 put

https://scatterplotpress.teachable.com/p/ml-code-exercises
http://www.scatterplotpress.com/blog/bonus-chapter-valuing-individual-property/

together	audio	resource	available	for	beginners.

Also,	if	you	enjoyed	the	pace	of	this	introduction	to	machine	learning,	you	may
also	 like	 to	 read	 the	 next	 two	 books	 in	 the	 series,	Machine	 Learning	 with
Python	for	Beginners	and	Machine	Learning:	Make	Your	Own	Recommender
System	.	These	two	books	build	on	the	knowledge	you’ve	gained	here	and	aim	to
extend	your	knowledge	of	machine	 learning	with	practical	 coding	exercises	 in
Python.

THANK	YOU
Thank	you	for	purchasing	this	book.	You	now	have	a	baseline	understanding	of
the	 key	 concepts	 in	machine	 learning	 and	 are	 ready	 to	 tackle	 this	 challenging
subject	 in	 earnest.	This	 includes	 learning	 the	vital	 programming	component	of
machine	learning.
If	 you	have	 any	direct	 feedback,	 both	 positive	 and	 negative,	 or	 suggestions	 to
improve	 this	 book,	 please	 feel	 free	 to	 send	 me	 an	 email	 at
oliver.theobald@scatterplotpress.com.	This	feedback	is	highly	valued,	and	I	look
forward	to	hearing	from	you.	Please	also	note	that	under	Amazon’s	Matchbook
program,	you	can	add	the	Kindle	version	of	this	book	(valued	at	$3.99	USD)	to
your	Amazon	Kindle	library	free	of	charge.
Finally,	I	would	like	to	express	my	gratitude	to	my	colleagues	Jeremy	Pedersen
and	Rui	Xiong	for	their	assistance	in	kindly	sharing	practical	tips	and	sections	of
code	 used	 in	 this	 book	 as	 well	 as	 my	 two	 editors	 Chris	 Dino	 (Red	 to	 Black
Editing)	and	again	Jeremy	Pedersen.

BUG	BOUNTY
We	offer	a	 financial	 reward	 to	 readers	 for	 locating	errors	or	bugs	 in	 this	book.
Some	 apparent	 errors	 could	 be	 mistakes	 made	 in	 interpreting	 a	 diagram	 or
following	along	with	the	code	in	the	book,	so	we	invite	all	readers	to	contact	the
author	 first	 for	 clarification	 and	 a	 possible	 reward,	 before	 posting	 a	 one-star
review!	Just	send	an	email	to	oliver.theobald@scatterplotpress.com	explaining
the	error	or	mistake	you	encountered.
This	way,	we	can	also	supply	 further	explanations	and	examples	over	email	 to
calibrate	your	understanding,	 or	 in	 cases	where	you’re	 right	 and	we’re	wrong,
we	offer	a	monetary	reward	through	PayPal	or	Amazon	gift	card.	This	way	you
can	 make	 a	 tidy	 profit	 from	 your	 feedback,	 and	 we	 can	 update	 the	 book	 to
improve	the	standard	of	content	for	future	readers.

FURTHER	RESOURCES
This	 section	 lists	 relevant	 learning	materials	 for	 readers	 that	 wish	 to	 progress
further	in	the	field	of	machine	learning.	Please	note	that	certain	details	listed	in
this	section,	including	prices,	may	be	subject	to	change	in	the	future.

|	Machine	Learning	|

Machine	Learning
Format:	Free	Coursera	course
Presenter:	Andrew	Ng
Suggested	 Audience:	 Beginners	 (especially	 those	 with	 a	 preference	 for
MATLAB)
A	free	and	expert	 introduction	 from	Adjunct	Professor	Andrew	Ng,	one	of	 the
most	 influential	figures	 in	 this	field.	This	course	 is	a	virtual	rite	of	passage	for
anyone	interested	in	machine	learning.

Project	3:	Reinforcement	Learning
Format:	Online	blog	tutorial
Author:	EECS	Berkeley
Suggested	Audience:	Upper-intermediate	to	advanced
A	practical	demonstration	of	reinforcement	learning,	and	Q-learning	specifically,
explained	through	the	game	Pac-Man.

|	Basic	Algorithms	|

Machine	 Learning	 With	 Random	 Forests	 And	 Decision	 Trees:	 A	 Visual
Guide	For	Beginners	
Format:	E-book
Author:	Scott	Hartshorn
Suggested	Audience:	Established	beginners
A	 short,	 affordable	 ($3.20	 USD),	 and	 engaging	 read	 on	 decision	 trees	 and
random	 forests	 with	 detailed	 visual	 examples,	 useful	 practical	 tips,	 and	 clear
instructions.

Linear	Regression	And	Correlation:	A	Beginner's	Guide

https://www.coursera.org/learn/machine-learning
https://inst.eecs.berkeley.edu/~cs188/sp12/projects/reinforcement/reinforcement.html
https://www.amazon.com/Machine-Learning-Random-Forests-Decision-ebook/dp/B01JBL8YVK/ref=sr_1_1?s=digital-text&ie=UTF8&qid=1517105184&sr=1-1&keywords=Machine+Learning+With+Random+Forests+And+Decision+Trees%3A+A+Visual+Guide+For+Beginners
https://www.amazon.com/Linear-Regression-Correlation-Beginners-Guide-ebook/dp/B071JXYDDB/ref=sr_1_1?s=digital-text&ie=UTF8&qid=1517104780&sr=1-1&keywords=scott+hartshorn

Format:	E-book
Author:	Scott	Hartshorn
Suggested	Audience:	All
A	well-explained	and	affordable	($3.20	USD)	introduction	to	linear	regression	as
well	as	correlation.

|	The	Future	of	AI	|

The	Inevitable:	Understanding	the	12	Technological	Forces	That	Will	Shape
Our	Future
Format:	E-Book,	Book,	Audiobook
Author:	Kevin	Kelly
Suggested	Audience:	All	(with	an	interest	in	the	future)
A	well-researched	 look	 into	 the	 future	with	 a	major	 focus	 on	AI	 and	machine
learning	by	The	New	York	Times	Best	Seller,	Kevin	Kelly.	It	provides	a	guide	to
twelve	technological	imperatives	that	will	shape	the	next	thirty	years.

Homo	Deus:	A	Brief	History	of	Tomorrow
Format:	E-Book,	Book,	Audiobook
Author:	Yuval	Noah	Harari
Suggested	Audience:	All	(with	an	interest	in	the	future)
As	a	follow-up	title	to	the	success	of	Sapiens:	A	Brief	History	of	Mankind,	Yuval
Noah	Harari	examines	the	possibilities	of	the	future	with	notable	sections	of	the
book	 examining	machine	 consciousness,	 applications	 in	 AI,	 and	 the	 immense
power	of	data	and	algorithms.

|	Programming	|

Learning	Python	,	5th	Edition
Format:	E-Book,	Book
Author:	Mark	Lutz
Suggested	Audience:	All	(with	an	interest	in	learning	Python)
A	comprehensive	introduction	to	Python	published	by	O’Reilly	Media.

Hands-On	Machine	Learning	with	Scikit-Learn	and	TensorFlow:	Concepts,
Tools,	and	Techniques	to	Build	Intelligent	Systems
Format:	E-Book,	Book

https://www.amazon.com/Inevitable-Understanding-Technological-Forces-Future-ebook/dp/B016JPTOUG/ref=sr_1_1?s=digital-text&ie=UTF8&qid=1517104544&sr=1-1&keywords=The+Inevitable%3A+Understanding+the+12+Technological+Forces+That+Will+Shape+Our+Future
https://www.amazon.com/Homo-Deus-Brief-History-Tomorrow-ebook/dp/B019CGXTP0/ref=sr_1_1?ie=UTF8&qid=1517399025&sr=8-1&keywords=Homo+Deus%3A+A+Brief+History+of+Tomorrow
https://www.amazon.com/Learning-Python-5th-Mark-Lutz/dp/1449355730/
https://www.amazon.com/Hands-Machine-Learning-Scikit-Learn-TensorFlow-ebook/dp/B06XNKV5TS/ref=sr_1_4?s=digital-text&ie=UTF8&qid=1517104226&sr=1-4&keywords=machine+learning

Author:	Aurélien	Géron
Suggested	Audience:	All	 (with	 an	 interest	 in	 programming	 in	 Python,	 Scikit-
Learn,	and	TensorFlow)
As	 a	 popular	 O’Reilly	 Media	 book	 written	 by	 machine	 learning	 consultant
Aurélien	Géron,	 this	 is	an	excellent	advanced	resource	for	anyone	with	a	solid
foundation	of	machine	learning	and	computer	programming.

|	Recommender	Systems	|

The	Netflix	 Prize	 and	Production	Machine	Learning	 Systems:	An	 Insider
Look
Format:	Blog
Author:	Mathworks
Suggested	Audience:	All
A	very	interesting	blog	post	demonstrating	how	Netflix	applies	machine	learning
to	formulate	movie	recommendations.

Recommender	Systems
Format:	Coursera	course
Presenter:	The	University	of	Minnesota
Cost:	Free	7-day	trial	or	included	with	$49	USD	Coursera	subscription
Suggested	Audience:	All
Taught	 by	 the	 University	 of	 Minnesota,	 this	 Coursera	 specialization	 covers
fundamental	 recommender	 system	 techniques	 including	 content-based	 and
collaborative	 filtering	 as	 well	 as	 non-personalized	 and	 project-association
recommender	systems.
.
|	Deep	Learning	|

Deep	Learning	Simplified
Format:	Blog
Channel:	DeepLearning.TV
Suggested	Audience:	All
A	short	video	series	to	get	you	up	to	speed	with	deep	learning.	Available	for	free
on	YouTube.

http://blogs.mathworks.com/loren/2015/04/22/the-netflix-prize-and-production-machine-learning-systems-an-insider-look/
https://www.coursera.org/specializations/recommender-systems
https://www.youtube.com/watch?v=b99UVkWzYTQ

Deep	Learning	Specialization:	Master	Deep	Learning,	and	Break	into	AI
Format:	Coursera	course
Presenter:	deeplearning.ai	and	NVIDIA
Cost:	Free	7-day	trial	or	included	with	$49	USD	Coursera	subscription
Suggested	Audience:	Intermediate	to	advanced	(with	experience	in	Python)
A	robust	curriculum	for	those	wishing	to	learn	how	to	build	neural	networks	in
Python	and	TensorFlow,	as	well	as	career	advice,	and	how	deep	learning	theory
applies	to	industry.

Deep	Learning	Nanodegree
Format:	Udacity	course
Presenter:	Udacity
Cost:	$599	USD
Suggested	 Audience:	 Upper	 beginner	 to	 advanced,	 with	 basic	 experience	 in
Python
A	 comprehensive	 and	 practical	 introduction	 to	 convolutional	 neural	 networks,
recurrent	neural	networks,	and	deep	reinforcement	learning	taught	online	over	a
four-month	period.	Practical	components	include	building	a	dog	breed	classifier,
generating	TV	scripts,	generating	faces,	and	teaching	a	quadcopter	how	to	fly.

|	Future	Careers	|

Will	a	Robot	Take	My	Job?
Format:	Online	article
Author:	The	BBC
Suggested	Audience:	All
Check	how	safe	your	job	is	in	the	AI	era	leading	up	to	the	year	2035.

So	You	Wanna	Be	a	Data	Scientist?	A	Guide	to	2015's	Hottest	Profession
Format:	Blog
Author:	Todd	Wasserman
Suggested	Audience:	All
Excellent	insight	into	becoming	a	data	scientist.

https://www.coursera.org/specializations/deep-learning
https://www.udacity.com/course/deep-learning-nanodegree-foundation--nd101
http://www.bbc.com/news/technology-34066941
http://mashable.com/2014/12/25/data-scientist/

APPENDIX:	INTRODUCTION	TO
PYTHON
Python	was	designed	by	Guido	van	Rossum	at	 the	National	Research	 Institute
for	Mathematics	and	Computer	Science	in	the	Netherlands	during	the	late	1980s
and	 early	 1990s.	 Derived	 from	 the	 Unix	 shell	 command-line	 interpreter	 and
other	programming	languages	including	C	and	C++,	it	was	designed	to	empower
developers	to	write	programs	with	fewer	lines	of	code	than	other	languages.	[35]
Unlike	 other	 programming	 languages,	 Python	 also	 incorporates	 many	 English
keywords	where	other	languages	use	punctuation.
In	Python,	the	input	code	is	read	by	the	Python	interpreter	to	perform	an	output.
Any	 errors,	 including	 poor	 formatting,	 misspelled	 functions	 or	 random
characters	left	someplace	in	your	script	are	picked	up	by	the	Python	interpreter
and	cause	a	syntax	error.
In	this	appendix	section,	we	will	discuss	basic	syntax	and	concepts	to	help	you
write	fluid	and	effective	code	using	Python	3.

Comments
Adding	 comments	 is	 good	 practice	 in	 computer	 programming	 to	 signpost	 the
purpose	and	content	of	your	code.	 In	Python,	 comments	 can	be	added	 to	your
code	using	the	#	(hash)	character.	Everything	placed	after	the	hash	character	(on
that	line	of	code)	is	then	ignored	by	the	Python	interpreter.

Example:
#	Import	Melbourne	Housing	dataset	from	my	Downloads	folder
dataframe	=	pd.read_csv('~/Downloads/Melbourne_housing_FULL.csv')
In	this	example,	the	second	line	of	code	will	be	executed,	while	the	first	line	of	code	will	be	ignored	by	the
Python	interpreter.

Python	Data	Types
Common	data	types	in	Python	are	shown	in	the	following	table.

Table	17:	Common	Python	data	types

In	 machine	 learning,	 you	 will	 commonly	 be	 working	 with	 lists	 containing
strings,	 integers	 or	 floating-point	 numbers.	 String	 variables	 are	 also	 called
character	 or	 alphanumeric	 variables	 and	 can	 include	 alphabetic	 letters,
numbers,	and	symbols	such	as	a	hashtag	(#)	or	underscore	(_).

Indentation	&	Spaces
Unlike	 other	 programming	 languages,	 Python	 uses	 indentation	 to	 group	 code
statements,	such	as	functions	and	loops,	rather	than	keywords	or	punctuation	to
separate	code	blocks.

Example:
new_user	=	[

66.00,	#Daily	Time	Spent	on	Site
48,	#Age

24593.33,	#Area	Income
131.76,	#Daily	Internet	Usage
1,	#Male
1,	#Country_	Albania
0,	#Country_Algeria

]

Spaces	 ,	 though,	 in	 expressions	 are	 ignored	 by	 the	 Python	 interpreter	 (i.e.
8+4=12	is	the	same	as	8	+	4	=	12)	but	can	be	added	for	(human)	clarity.

Arithmetic	in	Python
Commonly	used	arithmetical	operators	in	Python	are	displayed	in	Table	18.

Table	18:	Commonly	used	arithmetical	operators	in	Python

Python	 adheres	 to	 the	 standard	 mathematical	 order	 of	 operations,	 such	 that
multiplication	 or	 division,	 for	 example,	 is	 executed	 before	 addition	 or
subtraction.

Example:
2	+	2	*	3
The	output	of	this	expression	is	8	((2	*	3)	+	2)

As	with	standard	arithmetic,	parentheses	can	be	added	to	modify	the	sequence	of
operations.

Example:
(2	+	2)	*	3
The	output	of	this	expression	is	12	(4	*	3)

Variable	Assignment
In	computer	programming,	 the	role	of	a	variable	 is	 to	store	a	data	value	 in	 the
computer’s	memory	for	later	use.	This	enables	earlier	code	to	be	referenced	and
manipulated	by	the	Python	interpreter	calling	that	variable	name.	You	can	select
any	name	for	the	variable	granted	it	fits	with	the	following	rules:

It	contains	only	alpha-numeric	characters	and	underscores	(A-Z,	0-9,
_)
It	starts	with	a	letter	or	underscore	and	not	a	number
It	does	not	imitate	a	Python	keyword	such	as	“return”

In	addition,	variable	names	are	case-sensitive,	such	that	datafram	e 	and 	Datafram	 e
are	considered	two	separate	variables.
Variables	are	assigned	in	Python	using	the	= 	operator.

Example:
dataset	=	8

Python,	 though,	does	not	support	blank	spaces	between	variable	keywords	and
an	underscore	must	be	used	to	bridge	variable	keywords.

Example:
my_dataset	=	8

The	stored	value	(8)	can	now	be	referenced	by	calling	the	variable	name	my_datase
t 	.	Variables	also	have	a	“variable”	nature,	in	that	we	can	reassign	the	variable	to
a	different	value,	such	as:

Example:
my_dataset	=	8	+	8

The	value	of	th	e 	my_datase	t 	is	now	16.

It’s	important	to	note	that	the	equals	operator	in	Python	does	not	serve	the	same
function	 as	 equals	 in	 mathematics.	 In	 Python,	 the	 equals	 operator	 assigns
variables	 but	 does	 not	 follow	 mathematical	 logic.	 If	 you	 wish	 to	 solve	 a
mathematical	equation	in	Python	you	can	simply	run	the	code	without	adding	an
equals	operator.

Example:
2	+	2
Python	will	return	4	in	this	case.

If	you	want	to	confirm	whether	a	mathematical	relationship	in	Python	is	True	or
False,	you	can	use	== 	.

Example:
2	+	2	==	4

Python	will	retur	n 	Tru	e 	in	this	case.

Importing	Libraries
From	 web	 scraping	 to	 gaming	 applications,	 the	 possibilities	 of	 Python	 are
dazzling	 but	 coding	 everything	 from	 scratch	 constitutes	 a	 difficult	 and	 time-
consuming	 process.	 This	 is	 where	 libraries,	 as	 a	 collection	 of	 pre-
written	code	and	standardized	routines,	come	into	play.	Rather	than	write	scores
of	code	in	order	to	plot	a	simple	graph	or	scrape	content	from	the	web,	you	can
use	one	line	of	code	from	a	given	library	to	execute	a	highly	advanced	function.
There	 is	 an	 extensive	 supply	 of	 free	 libraries	 available	 for	web	 scraping,	 data
visualization,	 data	 science,	 etc.,	 and	 the	 most	 common	 libraries	 for	 machine
learning	are	Scikit-learn,	Pandas,	and	NumPy.	The	NumPy	and	Pandas	libraries
can	 be	 imported	 in	 one	 line	 of	 code,	 whereas	 for	 Scikit-learn,	 you’ll	 need	 to
specify	individual	algorithms	or	functions	over	multiple	lines	of	code.

Example:
import	numpy	as	np
import	pandas	as	pd
from	sklearn.neighbors	import	NearestNeighbors

Using	the	code	above,	you	can	call	code	commands	from	NumPy,	Pandas,	and
Nearest	Neighbors	from	Scikit-learn	by	calling 	n	p 	,	p	d 	,	and	NearestNeighbor	s 	in
any	 section	 of	 your	 code	 below.	You	 can	 find	 the	 import	 command	 for	 other
Scikit-learn	 algorithms	 and	 different	 code	 libraries	 by	 referencing	 their
documentation	online.

Importing	a	Dataset
CSV	datasets	can	be	imported	into	your	Python	development	environment	as	a
Pandas	 dataframe	 (tabular	 dataset)	 from	 your	 host	 file	 using	 the	 Pandas
command 	pd.read_csv() 	.	Note	that	the	host	file	name	should	be	enclosed	in	single
or	double-quotes	inside	the	parentheses.
You	will	also	need	to	assign	a	variable	to	the	dataset	using	the	equals	operator,
which	 will	 allow	 you	 to	 call	 the	 dataset	 in	 other	 sections	 of	 your	 code.	 This
means	 that	 anytime	 you	 call 	 datafram	 e 	 ,	 for	 example,	 the	 Python	 interpreter
recognizes	you	are	directing	 the	code	 to	 the	dataset	 imported	and	 stored	using
that	variable	name.

Example:
dataframe	=	pd.read_csv('~/Downloads/Melbourne_housing_FULL.csv')

The	Print	Function
The	print() 	function	is	used	to	print	a	message	within	its	parentheses	and	is	one
of	the	most	used	functions	in	Python.	Given	its	uncomplicated	utility—returning
exactly	what	 you	want	 printed—it	might	 not	 seem	 an	 important	 programming
function	or	even	necessary.	But	this	is	not	true.
Firstly,	 print	 is	 useful	 for	 debugging	 (finding	 and	 fixing	 code	 errors).	 After
making	adjustments	to	a	variable,	for	example,	you	can	check	the	current	value
using	the	print	function.
Input	: 	my_dataset	=	8
my_dataset	=	8	+	8
print(my_dataset)

Output	: 	16

Another	 common	 use	 case	 is	 to	 print	 non-processible	 information	 as	 a	 string.
This	 means	 that	 the	 statement/string	 enclosed	 in	 the	 parentheses	 is	 directly
printed	by	the	machine	and	doesn’t	interact	with	other	elements	of	the	code.	This
feature	 is	 useful	 for	 adding	 context	 and	 clarity	 to	 your	 code	 by	 annotating
aspects	of	the	code—especially	as	code	comments	(#)	don’t	show	as	an	output.

Input:	print	("Training	Set	Mean	Absolute	Error:	%.2f"	%	mae_train)

Output:	Training	Set	Mean	Absolute	Error:	27834.12

This	print	 statement,	 for	example,	 informs	 the	end-user	of	what	was	processed
by	the	Python	interpreter	to	deliver	that	result.	Without 	print(“Test	Set	Mean	Absolute
Error	: 	”),	all	we’d	see	is	unlabeled	numbers	after	the	code	has	been	executed.
Please	note	the	string	inside	the	parentheses	must	be	wrapped	with	double-quote
marks	“	”	or	single-quote	marks	‘	’.	A	mixture	of	single	and	double-quote	marks
is	 invalid,	 such	 as	 starting	with	 a	 single-quote	mark	 and	 ending	with	 double-
quote	marks.	The	print	 statement	 automatically	 removes	 the	quote	marks	 after
you	run	the	code.	If	you	wish	to	include	quote	marks	in	the	output,	you	can	add
single-quote	marks	inside	double-quote	marks	as	shown	below:

Input:	print("'Test	Set	Mean	Absolute	Error'")

Output:	'Test	Set	Mean	Absolute	Error'

Input:	print("What’s	your	name?")

Output:	What’s	your	name?

Indexing
Indexing	is	a	method	of	selecting	a	single	element	from	within	a	data	type,	such
as	a	list	or	string.	Each	element	in	a	data	type	is	numerically	indexed	beginning
at	 0,	 and	 elements	 can	 be	 indexed	 by	 calling	 the	 index	 number	 inside	 square
brackets.

Example:
my_string	=	"hello_world"
my_string[1]

Indexing	returns	the	value	e	in	this	example.

Example:
my_list	=	[10,	20	,	30	,	40]
my_list[0]

Indexing	returns	the	value	10	in	this	example.

Slicing
Rather	than	pull	a	single	element	from	a	collection	of	data,	you	can	use	slicing	to
grab	a	customized	subsection	of	elements	using	a	colon	(:).

Example:
my_list	=	[10,	20,	30,	40]
my_list[:3]

Slicing,	here,	goes	up	to	but	does	not	include	the	element	at	index	position	3,	thereby	returning	the	values	10
,	20	,	and	30	.

Example:
my_list	=	[10,	20,	30,	40]
my_list[1:3]
Slicing,	 here,	 starts	 at	 1	 and	 goes	 up	 to	 but	 does	 not	 include	 the	 element	 at	 index	 position	 3,	 thereby
returning	the	values	20	and	30	in	this	example.

OTHER	BOOKS	BY	THE	AUTHOR
Machine	Learning	with	Python	for	Beginners
Progress	 in	ML	by	 learning	how	to	code	 in	Python	 in	order	 to	build	your	own
prediction	models	and	solve	real-life	problems.
Machine	Learning:	Make	Your	Own	Recommender	System
Learn	how	 to	make	your	own	ML	 recommender	 system	 in	 an	 afternoon	using
Python.
Data	Analytics	for	Absolute	Beginners
Make	better	decisions	using	every	variable	with	this	deconstructed	introduction
to	data	analytics.
Statistics	for	Absolute	Beginners
Master	 the	 fundamentals	 of	 inferential	 and	 descriptive	 statistics	with	 a	mix	 of
practical	 demonstrations,	 visual	 examples,	 historical	 origins,	 and	plain	English
explanations.

SKILLSHARE	COURSE
Introduction	to	Machine	Learning	Concepts	for	Absolute	Beginners
This	class	covers	the	basics	of	machine	learning	in	video	format.	After
completing	this	class,	you	can	push	on	to	more	complex	video-based	classes
available	on	Skillshare.

https://www.amazon.com/Machine-Learning-Python-Practical-Beginners-ebook/dp/B07WN1TV57/ref=sr_1_2?keywords=machine+learning+python+oliver&qid=1567317622&s=digital-text&sr=1-2
https://amzn.to/2FNjhkt
https://www.amazon.com/Data-Mining-beginners-introduction-analytics-ebook/dp/B01N9PL553/ref=sr_1_5?qid=1570592051&refinements=p_27%3AOliver+Theobald&s=digital-text&sr=1-5&text=Oliver+Theobald
https://www.amazon.com/Statistics-Absolute-Beginners-Second-Theobald-ebook/dp/B0854DM1Y7/ref=tmm_kin_swatch_0?_encoding=UTF8&qid=1596686623&sr=8-7
https://skl.sh/3mBOVU7

[1]	“Will	A	Robot	Take	My	Job?”,	The	BBC	,	accessed	December	30,	2017,
http://www.bbc.com/news/technology-34066941
[2]	Nick	Bostrom,	“Superintelligence:	Paths,	Dangers,	Strategies,”	Oxford	University	Press,	2016.
[3]	Bostrom	also	quips	that	two	decades	is	close	to	the	remaining	duration	of	a	typical	forecaster’s	career.
[4]	Matt	Kendall,	“Machine	Learning	Adoption	Thwarted	by	Lack	of	Skills	and	Understanding,”	Nearshore
Americas	,	accessed	May	14,	2017,	http://www.nearshoreamericas.com/machine-learning-adoption-
understanding
[5]	Arthur	Samuel,	“	Some	Studies	in	Machine	Learning	Using	the	Game	of	Checkers	,”	IBM	Journal	of
Research	and	Development,		Vol.	3,	Issue.	3,	1959.
[6]	Bruce	Schneir,	“Data	and	Goliath:	The	Hidden	Battles	to	Collect	Your	Data	and	Control	Your	World,”	W.
W.	Norton	&	Company	,	First	Edition,	2016.
[7]	Remco	Bouckaert,	Eibe	Frank,	Mark	Hall,	Geoffrey	Holmes,	Bernhard	Pfahringer,	Peter	Reutemann	&
Ian	 Witten,	 “WEKA—Experiences	 with	 a	 Java	 Open-Source	 Project	 ,”	 Journal	 of	 Machine	 Learning
Research	,	Edition	11,	https://www.cs.waikato.ac.nz/ml/publications/2010/bouckaert10a.pdf
[8]	Data	 mining	 was	 originally	 known	 by	 other	 names	 including	 “database	 mining”	 and	 “information
retrieval.”	The	discipline	became	known	as	“knowledge	discovery	in	databases”	and	“data	mining”	in	the
1990s.
[9]	 Jiawei	 Han,	 Micheline	 Kamber	 &	 Jian	 Pei,	 “Data	 Mining:	 Concepts	 and	 Techniques	 (The	 Morgan
Kaufmann	Series	in	Data	Management	Systems),”	Morgan	Kauffmann,	3rd	Edition,	2011.
[10]	“Unsupervised	Machine	Learning	Engine,”	DataVisor	,	accessed	May	19,	2017,
https://www.datavisor.com/unsupervised-machine-learning-engine
[11]	Aside	from	artificial	neural	networks,	most	learning	algorithms	qualify	as	shallow.
[12]	Kevin	Kelly,	“The	Inevitable:	Understanding	the	12	Technological	Forces	That	Will	Shape	Our	Future	,”
Penguin	Books	,	2016.
[13]	“What	is	Torch?”	Torch	,	accessed	April	20,	2017,	http://torch.ch
[14]	Pascal	Lamblin,	“MILA	and	the	future	of	Theano,”	Google	Groups	Theano	Users	Forum	,
https://groups.google.com/forum/#!topic/theano-users/7Poq8BZutbY
[15]	Standard	deviation	is	a	measure	of	spread	among	data	points.	It	measures	variability	by	calculating	the
average	squared	distance	of	all	data	observations	from	the	mean	of	the	dataset.
[16]	The	term	owes	its	name	to	its	origins	in	the	field	of	radar	engineering.
[17]	Although	the	linear	formula	is	written	differently	in	other	disciplines,	y	=	bx	+	a	is	the	preferred	format
used	in	statistics	and	machine	learning.	This	formula	could	also	be	expressed	using	the	notation	of	y	=	β	0	+
β	1	x	1	+	e,	where	β	0	is	the	intercept,	β	1	is	the	slope,	and	e	is	the	residual	or	error.)
[18]	Brandon	Foltz,	“Logistic	Regression,”	YouTube	,
https://www.youtube.com/channel/UCFrjdcImgcQVyFbK04MBEhA
[19]	Prratek	Ramchandani,	“Random	Forests	and	the	Bias-Variance	Tradeoff,”	Towards	Data	Science	,
https://towardsdatascience.com/random-forests-and-the-bias-variance-tradeoff-3b77fee339b4

[20]	Random	and/or	useless	information	that	obscures	the	key	meaning	of	the	data.
[21]	In	Scikit-learn,	the	default	for	the	C	hyperparameter	is	1.0	and	the	strength	of	the	regularization	(the
penalty	for	overfitting)	is	inversely	proportional	to	C.	This	means	any	value	below	1.0	effectively	adds
regularization	to	the	model,	and	the	penalty	is	squared	L2	(L2	is	calculated	as	the	square	root	of	the	sum	of
the	squared	vector	values).
[22]	It’s	generally	good	practice	to	train	the	model	twice—with	and	without	standardization—and	compare
the	performance	of	the	two	models.
[23]	Geoffrey	Hinton	et	al.	published	a	paper	in	2006	on	recognizing	handwritten	digits	using	a	deep	neural
network	which	they	named	deep	learning	.
[24]	Scott	Hartshorn,	“Machine	Learning	With	Random	Forests	And	Decision	Trees:	A	Visual	Guide	For
Beginners,”	Scott	Hartshorn	,	2016.
[25]	The	class	that	receives	the	most	votes	is	taken	as	the	final	output.
[26]	Generally,	the	more	votes	or	numeric	outputs	that	are	taken	into	consideration	the	more	accurate	the
final	prediction.
[27]	The	aim	of	approaching	regression	problems	is	to	produce	a	numeric	prediction,	such	as	the	price	of	a
house,	rather	than	to	predict	a	discrete	class	(classification).
[28]	Decision	trees	can	treat	missing	values	as	another	variable.	For	instance,	when	assessing	weather
outlook,	the	data	points	can	be	classified	as	sunny,	overcast	,	rainy	or	missing	.
[29]	Ian	H.	Witten,	Eibe	Frank,	Mark	A.	Hall,	“Data	Mining:	Practical	Machine	Learning	Tools	and
Techniques,”	Morgan	Kaufmann	,	Third	Edition,	2011.
[30]	“Dropna,”	Pandas	,	https://pandas.pydata.org/pandas-
docs/stable/generated/pandas.DataFrame.dropna.html
[31]	“Gradient	Boosting	Regressor,”	Scikit-learn	,	http://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
[32]	In	machine	learning,	the	test	data	is	used	exclusively	to	assess	model	performance	rather	than	optimize
the	model.	As	the	test	data	cannot	be	used	to	build	and	optimize	the	model,	data	scientists	commonly	use	a
third	independent	dataset	called	the	validation	set	.	After	building	an	initial	model	with	the	training	set,	the
validation	 set	 can	 be	 fed	 into	 the	 prediction	 model	 and	 used	 as	 feedback	 to	 optimize	 the	 model’s
hyperparameters.	The	test	set	is	then	used	to	assess	the	prediction	error	of	the	final	model.
[33]	Most	readers	of	this	book	report	waiting	up	to	30	minutes	for	the	model	to	run.
[34]	Aurélien	Géron,	“Hands-On	Machine	Learning	with	Scikit-Learn	and	TensorFlow:	Concepts,	Tools,	and
Techniques	to	Build	Intelligent	Systems,”	O’Reilly	Media	,	2017.
[35]	Mike	McGrath,	“Python	in	easy	steps:	Covers	Python	3.7,”	In	Easy	Steps	Limited	,	Second	Edition,
2018.

	PREFACE
	WHAT IS MACHINE LEARNING?
	MACHINE LEARNING CATEGORIES
	THE MACHINE LEARNING TOOLBOX
	DATA SCRUBBING
	SETTING UP YOUR DATA
	LINEAR REGRESSION
	LOGISTIC REGRESSION
	k-NEAREST NEIGHBORS
	k-MEANS CLUSTERING
	BIAS & VARIANCE
	SUPPORT VECTOR MACHINES
	ARTIFICIAL NEURAL NETWORKS
	DECISION TREES
	ENSEMBLE MODELING
	DEVELOPMENT ENVIRONMENT
	BUILDING A MODEL IN PYTHON
	MODEL OPTIMIZATION
	NEXT STEPS
	THANK YOU
	BUG BOUNTY
	FURTHER RESOURCES
	APPENDIX: INTRODUCTION TO PYTHON

